Ионизационная Камера

Ионизационная Камера в Энциклопедическом словаре:
Ионизационная Камера - прибор для регистрации и спектрометрии частиц ввиде электрического конденсатора, заполненного газом. Действие основано наизмерении электрического заряда, возникающего при ионизации газа отдельнойчастицей либо потоком частиц за определенный промежуток времени.

Значение слова Ионизационная Камера по словарю медицинских терминов:
Ионизационная Камера - прибор для обнаружения и измерения ионизирующего излучения путем преобразования его в электрические сигналы, пропорциональные величине мощности дозы или дозе ионизирующего излучения; основная часть ионизационных дозиметрических приборов.

Определение «Ионизационная Камера» по БСЭ:
Ионизационная камера - прибор для исследования и регистрации ядерных частиц и излучении, действие которого основано на способности быстрых заряженных частиц вызывать ионизацию газа. И. к. представляет собой воздушный или газовый электрический конденсатор, к электродам которого приложена разность потенциалов V. При попадании ионизирующих частиц в пространство между электродами там образуются электроны и ионы газа, которые, перемещаясь в электрическом поле, собираются на электродах и фиксируются регистрирующей аппаратурой. Наиболее простой является И. к. с параллельными плоскими электродами (дисками). Диаметр диска в несколько раз превышает расстояние между ними. В цилиндрической И. к. электроды - два коаксиальных цилиндра, один из которых заземлён и служит корпусом И. к. (рис. 1). Сферическая И. к. состоит из 2 концентрических сфер (иногда внутренний электрод - стержень).
Различают И. к. токовые и импульсные. В токовых И. к. гальванометром измеряется сила тока I, создаваемого электронами и ионами (рис. 2). Зависимость I от V (рис. 3) - вольтамперная характеристика И. к. - имеет горизонтальный участок AB, где ток не зависит от напряжения (ток насыщения I0). Это соответствует полному собиранию на электродах И. к. всех образовавшихся электронов и ионов. Участок AB обычно является рабочей областью И. к. Токовые И. к. дают сведения об общем интегральном количестве ионов, образовавшихся в 1 сек. Они обычно используются для измерения интенсивности излучений и для дозиметрических измерений (см. Дозиметрические приборы). Так как ионизационные токи в И. к. обычно малы (10−10-10−15 а), то они усиливаются с помощью усилителей постоянного тока.
В импульсных И. к. регистрируются и измеряются импульсы напряжения, которые возникают на сопротивлении R (рис. 4) при протекании по нему ионизационного тока, вызванного прохождением каждой частицы. Амплитуда и длительность импульсов зависят от величины R, а также от ёмкости C (рис. 4). Для импульсной И. к., работающей в области тока насыщения, амплитуда импульса пропорциональна энергии E, потерянной частицей в объёме И. к. Обычно объектом исследования для импульсных И. к. являются сильно ионизирующие короткопробежные частицы, способные полностью затормозиться в межэлектродном пространстве
(α-частицы, осколки делящихся ядер). В этом случае величина импульса И. к. пропорциональна полной энергии частицы и распределение импульсов по амплитудам воспроизводит распределение частиц по энергиям, т. е. даёт энергетический спектр частиц. Важная характеристика импульсной И. к. - её разрешающая способность, т. е. точность измерения энергии отдельной частицы. Для α-частиц с энергией 5 Мэв разрешающая способность достигает 0,5%.
В импульсном режиме работы важно максимально сократить время τ срабатывания И. к. Подбором величины R можно добиться того, чтобы импульсы И. к. соответствовали сбору только электронов, гораздо более подвижных, чем ионы. При этом удаётся значительно уменьшить длительность импульса и достичь
τ ∼ 1 мксек.
Варьируя форму электродов И. к., состав и давление наполняющего её газа, обеспечивают наилучшие условия для регистрации определённого вида излучении. В И. к. для исследования короткопробежных частиц источник помещают внутри камеры или в корпусе делают тонкие входные окошки из слюды или синтетических материалов. В И. к. для исследования гамма-излучений ионизация обусловлена вторичными электронами, выбитыми из атомов газа или стенок И. к. Чем больше объём И. к., тем больше ионов образуют вторичные электроны. Поэтому для измерения γ-излучении малой интенсивности применяют И. к. большого объёма (несколько л и более).
И. к. может быть использована и для измерений нейтронов. В этом случае ионизация вызывается ядрами отдачи (обычно протонами), создаваемыми быстрыми нейтронами, либо α-частицами, протонами или γ-квантами, возникающими при захвате медленных нейтронов ядрами 10B, іHe, 113Cd. Эти вещества вводятся в газ или стенки И. к. Для исследования частиц, создающих малую плотность ионизации, используются И. к. с газовым усилением (см. Пропорциональный счётчик). И. к. применяют также при исследовании космических лучей (см. Калориметр ионизационный).
Лит.: Калашникова В. И., Козодаев М. С., Детекторы элементарных частиц, М., 1966 (Экспериментальные методы ядерной физики, ч. 1); Альфа-, бета- и гамма-спектроскопия, под ред. К. Зигбана, пер. с англ., в. 1, М., 1969.
К. П. Митрофанов.
Рис. 1. Сечение цилиндрической ионизационной камеры: 1 - цилиндрический корпус камеры, служащий отрицательным электродом; 2 - цилиндрический стержень, служащий положительным электродом; 3 - изоляторы.

Рис. 2. Схема включения токовой ионизационной камеры: V - напряжение на электродах камеры; G - гальванометр, измеряющий ионизационный ток.

Рис. 3. Вольтамперная характеристика ионизационной камеры.

Рис. 4. Схема включения импульсной ионизационной камеры: С - ёмкость собирающего электрода; R - сопротивление.

Ионизатор    Ионизационная Камера    Ионизационный