Кальций

Значение слова Кальций по Ефремовой:
Кальций - Химический элемент, металл серебристо-белого цвета, входящий в состав известняка, мрамора и т.п., применяющийся в металлургии, строительстве, медицине.

Значение слова Кальций по Ожегову:
Кальций - Химический элемент, мягкий серебристо-белый металл

Кальций в Энциклопедическом словаре:
Кальций - (лат. Calcium) - Ca, химический элемент II группы периодическойсистемы, атомный номер 20, атомная масса 40,078, относится кщелочноземельным металлам. Название от латинского calx, родительный падежcalcis - известь. Серебристо-белый металл, плотность 1,54 г/см3, tпл 842.С. При обычной температуре легко окисляется на воздухе. Пораспространенности в земной коре занимает 5-е место (минералы кальцит,гипс, флюорит и др.). Как активный восстановитель служит для получения U,Th, V, Cr, Zn, Be и других металлов из их соединений, для раскислениясталей, бронз и т. д. Входит в состав антифрикционных материалов.Соединения кальция применяют в строительстве (известь, цемент), препаратыкальция - в медицине.

Значение слова Кальций по словарю медицинских терминов:
кальций (Calcium; Са) - химический элемент II группы периодической системы Д. И. Менделеева; атомный номер 20, атомная масса 40,08; обладает высокой биологической активностью; является важным компонентом системы свертывания крови; входит в состав костной ткани; различные соединения кальция применяются в качестве лекарственных средств.

Значение слова Кальций по словарю Ушакова:
КАЛЬЦИЙ
кальция, мн. нет, м. (от латин. calx - известь) (хим.). Химический элемент - металл серебристо-белого цвета, содержащийся в извести.

Значение слова Кальций по словарю Даля:
Кальций
м. металл, составляющий химическую основу извести. Кальцинировать что, пережигать металл, соль или камень. Кальцинация ж. действие это, пережиг, перекалка.

Значение слова Кальций по словарю Брокгауза и Ефрона:
Кальций (хим.) — металл, содержащийся в извести, означается Са, вес атома Са = 40. Сильно распространен в природе повсюду. В коренных каменистых породах содержится в виде кремнеземистых минералов, подобных пироксенам (см.), амфиболам (см) и т. п., в осадочных преимущественно в виде известняков (см.), мрамора (см.), доломита (см.), известкового шпата (см.), мергелей и т. п., где содержится углеизвестковая соль СаСО 3, служащая для добывания извести СаО или окиси К.; в осадочных же породах К. часто входит в виде гипса (см.) или водной серно-известковой соли CaSO 42H2 O. Известь содержится также во всех обычных почвах (см.), где составляет необходимую составную часть, поглощаемую растениями; без известковых соединений они произрастать не могут. Из почвы известь извлекается водой в виде раствора в избытке воды, содержащей углекислоту. Если взять раствор извести (известковую воду) и пропускать в нее углекислый газ, то сперва образуется осадок углеизвестковой соли СаСО 3, почти не растворимой в воде, а потом (при дальнейшем пропускании углекислоты) осадок вновь весь растворяется. Такие воды образуются очень часто в природе и относятся к числу жестких (см. Вода) вод, иногда же являются воды, насыщенные углекислотой, и если они протекают под землею через известняки, то насыщают известковой солью и тогда, выступив на земную поверхность, осаждают ноздреватый известняк (см. Туфы). В обычных водах рек всегда содержится более или менее такой растворенной известковой соли, а потому в морях и океанах скопляется много известковых солей. Часть их осаждается на дно в осадочные породы, часть поступает в число морских растений, а особенно животных, и после их смерти отлагается также на дно океана. Особенно много углеизвестковой соли поглощается слизняками, имеющими раковины, потому что раковины почти нацело состоят из углеизвестковой соли, а потому некоторые из осажденных в море известковых пород представляют не что иное, как собрание раковин. Таков, напр., известняк, на котором стоит г. Одесса. Но и в теле высших животных, особенно в их костях (см.), содержится много извести, преимущественно в виде фосфорной соли Са 3P2O8. Поэтому и кровь содержит между зольными своими частями всегда известь. Словом, К. в виде солей извести весьма широко распространен в природе и играет в ней важную роль. В этом отношении к нему приближается сходный с ним магний (см.). Оба они, судя по спектральным иcследованиям (см.), находятся на солнце и звездах. Главные спектральные линии, свойственные К., имеют длину (в миллионных долях миллиметра) волны: 646, 642, 612, 559, 445, 442, 423, 397 и 393; общий цвет светящих паров К. красновато-желтый, но далеко не столь якро-красный, как у стронция, и не столь желтый, как у натрия. По своему химическому характеру К. относится к числу двуэквивалентных щелочноземельных металлов, образует соли состава СаХ 2 (где Х = ОН, Cl, 1/2 O и т. п.) и основную окись СаО; металлоорганических же соединений не дает и относится по периодической системе ко второй группе из числа элементов 4-го ряда, где следует вслед за калием; К = 39. Ближайшими аналогами К. должно считать магний (см.), стронций (см.) и барий (см.). Общие признаки (см. Щелочноземельные металлы) группы этих металлов позволяют ограничить изложение лишь указанием некоторых соединений К. Металлический К. получен Деви, подобно натрию, действием гальванического тока. Уголь в жару печей и даже в жару, развиваемом гремучим газом, не восстановляет извести в металл, но в жару электрической печи (2500° — 3500°) известь плавится и восстановляется углем (Муассан), образуя при этом углеродистый К. С 2 Cа, который отвечает ацетилену С 2H2. При действии тока на сплавленный Са Cl2 или при накаливании йодистого К. (получается действием йодистого водорода на известь) с натрием легко происходит металлический К. в виде желтоватого, блестящего металла, имеющего уд. вес 1,58, плавящегося в красно-калильном жару и затем отчасти улетучивающегося. На воздухе при обыкн. температуре К. окисляется мало, но воду разлагает при обыкн. температуре; накаленный же горит ярким пламенем, кислоты разлагает очень легко, выделяя водород, с галоидами также соединяется как натрий. При накаливании извести с магнием в струе водорода Винклер заметил не только восстановление К., но и образование его соединения с водородом. Водородистый К. Са H [Так в издании 1895 г. — Ред.] выдерживает сильное накаливание, но на воздухе очень легко окисляется. В момент выделения К. соединяется также с газообразным азотом, образуя азотистый К. Са 3N2, который с водой и кислотами дает аммиак, а с окисью углерода — синеродистый К. Ca3N2 + 2СО = Са (CN) 2 + 2СаО. Окись К. СаО, или известь (см.), образуется при горении металлического К. и при разложении накаливанием многих известковых солей, например азотнокислой Са (NO 3)2, щавелевой С 2 СаО 4, угольной СаСо 3 и т. п. Свойства см. соотв. ст., уд. вес 3,15. С водой дает гидрат (гашеная известь) Са(ОН) 2, уд. вес 2,07: он при высушивании до 100° представляет указанный состав, а при накаливании до 530° теряет всю воду, образуя вновь безводную известь. Одна часть СаО для растворения при обыкн. температуре требует 800 ч. воды, при 100° — 1500 ч. (а потому известковая вода при нагревании мутится). Раствор щелочной; как щелочь, известь действует разъедающим образом на многие органич. вещества, кислоты же насыщает, образуя соли типа СаХ 2. С перекисью водорода образует мелкие кристаллы водной перекиси К. CaO22 О. Многие соли извести или нерастворимы, или мало растворимы в воде, особенно же фосфорная Са 3P2 О 8 (см. Фосфорная кислота), борная, щавелевая, угольная, сернокислая и др. Из растворимых солей чаще всего применяются хлористый К. СаCl 2, азотнокислая СаN 2 О 6 и уксуснокислая Са(С 2 Н 3 О 2)2 соли. От магнезиальных солей, очень сходных с известковыми, явное отличие состоит в том, что в присутствии нашатыря соли Са осаждаются из растворов содой, образуя СаСО 3, тогда как соли Mg остаются в растворе, что зависит от того, что известь не образует таких двойных аммониакальных солей, какие столь легко образуются магнезией. Из солей К. опишем для примера хлористый кальций CaCl2. Он получается во многих случаях как побочный продукт других химических превращений, напр. при разложении нашатыря известью для получения аммиака: 2NH4 Сl + Ca(HO) 2 = 2NH З + 2H2 O+СаСl 2. Белильная известь CaCl 2 + Са(СlO) 2, выделяя кислород (когда действует окислительно), также оставляет CaCl 2. Известь с соляною кислотою дает тот же продукт CaO + 2HCl = CaCl 2 + H2 O. После выпаривания растворов C aCl2 обыкновенно при охлаждении выделяются хорошо образованный 6-водный кристаллогидрат СаСl 26H2 O (уд. вес 1,69, безвод. соли CaCl 2 — 2,2), плавящийся при 29°. Если на 100 ч. воды в растворе будет 120 ч. CaCl 2, то при охлаждении образуются пластинки непостоянного кристаллогидрата СаСl 24H2O α (Розебом), которые при темп. выше 38° дают СаСl 22H2 O, а при температурах ниже 18° переходят (даже при простом трении) в изомерное более прочное видоизменение СаСl 24H2O α. Растворимость указанных гидратов (все по данным Розебома, 1889) при 30° для 6-водной соли (на 100 ч. воды) 100 CaCl 2 а для 4-водной α 101, для β 114 CaCl2. Кристаллы 2-водной соли могут быть получены из растворов при обыкн. темп., если будет избыток соляной кислоты. При 165° для этого кристаллогидрата упругость паров равна атмосферной. Около 175° этот кристаллогидрат дает СаСl 2 Н 2 O, а выше 265° и этот теряет воду, образуя безводный CaCl 2. Охлаждая ненасыщенные растворы CaCl 2 (как для всяких солей), получают лед при температурах ниже 0°, а раствор состава СаСl 2 14Н 2 O застывает вполне как криогидрат (см.) при -55°. Вследствие существования различных кристаллогидратов могут легко происходить пересыщенные растворы: напр. при 25° все растворы, содержащие более 83 ч. CaCl 2 на 100 ч. воды, будут пересыщенными в отношении к 6-водной соли и выделять ее от прикосновения с кристаллом этой соли. Раствор, содержащий 50% CaCl 2, кипит при 130°, 70% при 158°. Удельный вес растворов, содержащих p процентов по весу CaCl 2, при 15° (в пустоте и по отношению к воде при 4°) выражается довольно точно параболой: S = 0,9992 + 0,008024 p + 0,0000476 р 2. При испарении растворов досуха часть соли разлагается, образуя известь и соляную кислоту, а потому для приготовления средней безводной соли окончательное высушивание ведут в струе НCl. Безводный CaCl 2 плавится при 719°. Безводная соль жадно поглощает воду, выделяя при растворении в избытке воды на граммовый частичный вес (т. е. на 56 гр.) 18723 ед. теплоты. Поэтому высушенный пористый CaCl 2 употребляется для сушения газов. Для этого раствор сгущают кипячением до тех пор, пока образуются корки одноводной соли, которые и собираются, а чтобы они поглощали лишь воду, а не СО 2, их долгое время держат в струе сухого углекислого газа. Из термохимических данных для К. приведем, по Томсену, что реакция (в пайных весовых количествах) Cа + О развивает +130,9 больш. калорий; СаО + H 2 O дает 15,5 больших калорий, а СаН 2 О 2, растворяясь в б. избытке воды, 2,79; Са + Cl 2 развивает 169,8 больших калорий, Са + Br 2 140,8 больших калорий, Са + J 2 107,2 больших калорий. CaCl 2 + 6Н 2 О дает 21,75 больших калорий, а растворение этого кристаллогидрата в воде поглощает 4,36 больших калорий. Известь, соединяясь с серным ангидридом, т. е. реакция СаО + SO 3, отделяет 84,2 больших калорий, a CaSO 4, растворяясь в избытке воды, отделяет 4,4 больших калорий. Гидрат извести, насыщаясь срной кислотой и образуя гипс, т. е. реакция Са(ОН) 2 + Н 2SO4, выделяет 52,3 больших калорий, а СаSО 42 O, растворяясь в избытке воды, поглощает 0,3 больших калорий. Известь, соединяясь с газообразной углекислотой, т. е. реакция СаО + СО 2, развивает 42,5 больших калорий. Кальций, его медиц. препараты. Соединения К., особенно с фосфорною кислотою, играют важную роль в развитии и питании тела и поддержании его естественных отправлений. Известь, необходимая для организма человека, вводится в него как растительной, так и животной пищей. Неправильное или недостаточное питание, пониженное усвоение пищеварительным каналом, усиленное выведение мочой при изнуряющих болезнях, необычная трата фосфорнокислой извести во время беременности (для развития костей зародыша), в период прорезывания зубов или при необыкновенно быстром росте — могут повести за собой заметный недостаток извести в организме и содействовать порождению английской болезни, остеомалации, запоздалого прорезывания зубов, золотухи и др. болезней. В случаях явственного известкового голодания многие врачи считают доставку организму извести путем пищи недостаточной и полагают, что усиленным введением известковых препаратов, особенно фосфорнокислых, можно вернее достигнуть ассимиляции и отложения К. в костных тканях. Но едва ли одно введение извести, без соблюдения диетических и гигиенических условий, может содействовать излечению этих болезней. Окись К. Едкая, жженая известь с терапевтическими целями употребляется только для прижиганий (венская паста, см. Калий), мылами, едкими и углекислыми щелочами или для удаления родимых пятен, бородавчатых наростов, далее, как средство для удаления волос, против парши и хронической экземы. Известковая вода — см. соотв. ст. II. Нерастворимые в воде известковые соли. В медицине применяются: 1) углекислый К. очищенный, в виде порошков или микстуры со взбалтыванием; назначается при диспепсии с развитием кислот и при хронических поносах. 2) Фосфорнокислый К. (Calcaria phosphorica) — белый кристаллический порошок, нерастворимый в воде, растворимый в соляной кислоте; при золотухе, рахите, при золотушных страданиях костей и т. д. 3) Жженая сернокислая известь, жженый гипс (Calcium sulfuricum ustum) — для неподвижных хирургических повязок. Кроме того, гипс служит дезинфекционным средством для животных извержений. III. Известковые соли, легко растворимые в воде. Из них только хлористый К. изучен более точно как в токсическом, так и в медицинском отношении, но установлена ядовитость и др. легко растворимых известковых солей (уксуснокислой, молочнокислой, азотнокислой).

Определение слова «Кальций» по БСЭ:
Кальций (Calcium)
Ca, химический элемент II группы периодической системы Менделеева, атомный номер 20, атомная масса 40,08; серебряно-белый лёгкий металл. Природный элемент представляет смесь шести стабильных изотопов: 40Ca, 42Ca, 43Ca, 44Ca, 46Ca и 48Ca, из которых наиболее распространён 40Ca (96, 97%).
Соединения Ca - известняк, мрамор, гипс (а также известь - продукт обжига известняка) уже в глубокой древности применялись в строительном деле. Вплоть до конца 18 в. химики считали известь простым телом. В 1789 А. Лавуазье предположил, что известь, магнезия, барит, глинозём и кремнезём - вещества сложные. В 1808 Г. Дэви, подвергая электролизу с ртутным катодом смесь влажной гашёной извести с окисью ртути, приготовил амальгаму Ca, а отогнав из неё ртуть, получил металл, названный
«кальций» (от лат. calx, родительный падеж calcis - известь).
Распространение в природе. По распространённости в земной коре Ca занимает 5-е место (после О, Si, Al и Fe); содержание 2,96% по массе. Он энергично мигрирует и накапливается в различных геохимических системах, образуя 385 минералов (4-е место по числу минералов). В мантии Земли Ca мало и, вероятно, ещё меньше в земном ядре (в железных метеоритах 0,02%). Ca преобладает в нижней части земной коры, накапливаясь в основных породах; большая часть Ca заключена в полевом шпате - анортите Ca [Al2Si2O8]; содержание в основных породах 6,72%, в кислых (граниты и др.) 1,58%. В биосфере происходит исключительно резкая дифференциация Ca, связанная главным образом с
«карбонатным равновесием»: при взаимодействии углекислого газа с карбонатом CaCO3 образуется растворимый бикарбонат Са (НСО3)2:
СаСО3 + H2O + CO2 ⇔ Са (НСО3)2 ⇔ Ca2+ + 2HCO3-.
Эта реакция обратима и является основой перераспределения Ca. При высоком содержании CO2 в водах Ca находится в растворе, а при низком содержании CO2 в осадок выпадает минерал кальцит СаСОз, образуя мощные залежи известняка, мела, мрамора.
Огромную роль в истории Ca играет и биогенная миграция. В живом веществе из элементов - металлов Ca - главный. Известны организмы, которые содержат более 10% Ca (больше углерода), строящие свой скелет из соединений Ca, главным образом из СаСО3 (известковые водоросли, многие моллюски, иглокожие, кораллы, корненожки и т.д.). С захоронением скелетов морских животных и растений связано накопление колоссальных масс водорослевых, коралловых и прочих известняков, которые, погружаясь в земные глубины и минерализуясь, превращаются в различные виды мрамора.
Огромные территории с влажным климатом (лесные зоны, тундра) характеризуются дефицитом Ca - здесь он легко выщелачивается из почв. С этим связано низкое плодородие почв, низкая продуктивность домашних животных, их малые размеры, нередко болезни скелета. Поэтому большое значение имеет известкование почв, подкормка домашних животных и птиц и т.д. Напротив, в сухом климате СаСО3 трудно растворим, поэтому ландшафты степей и пустынь богаты Ca. В солончаках и солёных озёрах часто накапливается Гипс CaSO4·2H2O.
Реки приносят в океан много Ca, но он не задерживается в океанической воде (ср. содержание 0,04%), а концентрируется в скелетах организмов и после их гибели осаждается на дно преимущественно в форме СаСО3. Известковые илы широко распространены на дне всех океанов на глубинах не более 4000 м (на больших глубинах происходит растворение СаСО3, организмы там нередко испытывают дефицит Ca).
Важную роль в миграции Ca играют подземные воды. В известняковых массивах они местами энергично выщелачивают СаСО3, с чем связано развитие Карста, образование пещер, сталактитов и сталагмитов. Помимо кальцита, в морях прошлых геологических эпох было широко распространено отложение фосфатов Ca (например, месторождения фосфоритов Каратау в Казахстане), доломита СаСО3·MgCO3, а в лагунах при испарении -гипса.
В ходе геологической истории росло биогенное карбонатообразование, а химическое осаждение кальцита уменьшалось. В докембрийских морях (свыше 600 млн. лет назад) не было животных с известковым скелетом; они приобрели широкое распространение начиная с кембрия (кораллы, губки и т.д.). Это связывают с высоким содержанием CO2 в атмосфере докембрия.
Физические и химические свойства. Кристаллическая решётка α-формы Ca (устойчивой при обычной температуре) гранецентрированная кубическая а = 5,56 Е. Атомный радиус 1,97 Е, ионный радиус Ca2+, 1,04 Е. Плотность 1,54 г/смі (20 °С). Выше 464°C устойчива гексагональная β-форма. tпл 851°C, tкип 1482°C; температурный коэффициент линейного расширения 22·10−6 (0-300°C); теплопроводность при 20°C 125,6 Вт/(м·К) или 0,3 кал/(см·сек°С); удельная теплоёмкость (0-100 °С) 623,9 дж/(кг·К) или 0,149 кал/(г·°C); удельное электросопротивление при 20°C 4,6·10−8 ом·м или 4,6·10−6 ом·см; температурный коэффициент электросопротивления 4,57·10−3 (20°C).
Модуль упругости 26 Гн/мІ (2600 кгс/ммІ); предел прочности при растяжении 60 Мн/мІ (6 кгс/ммІ); предел упругости 4 Мн/мІ (0,4 кгс/ммІ), предел текучести 38 Мн/мІ (3,8 кгс/ммІ); относительное удлинение 50%; твердость по Бринеллю 200-300 Мн/мІ (20-30 кгс/ммІ). К. достаточно высокой чистоты пластичен, хорошо прессуется, прокатывается и поддается обработке резанием.
Конфигурация внешней электронной оболочки атома Ca 4sІ, в соответствии с чем Ca в соединениях 2-валентен. Химически Ca очень активен. При обычной температуре Ca легко взаимодействует с кислородом и влагой воздуха, поэтому его хранят в герметически закрытых сосудах или под минеральным маслом. При нагревании на воздухе или в кислороде воспламеняется, давая основной окисел CaO (см. Кальция окись). Известны также перекиси Ca - CaO2 и СаО4. С холодной водой Ca взаимодействует сначала быстро, затем реакция замедляется вследствие образования пленки Ca (OH)2 (см. Кальция гидроокись). Ca энергично взаимодействует с горячей водой и кислотами, выделяя H2 (кроме концентрированной HNO3).
С фтором реагирует на холоду, а с хлором и бромом - выше 400 °С, давая соответственно CaF2, CaCl2 и CaBr2 (см. Кальция фторид, Кальция хлорид, Кальция бромид). Эти галогениды в расплавленном состоянии образуют с Ca так называемого субсоединения - CaF, CaCI, в которых Ca формально одновалентен. При нагревании Ca c серой получается Кальция сульфид CaS, последний присоединяет серу, образуя полисульфиды (CaS2, CaS4 и др.). Взаимодействуя с сухим водородом при 300-400°C Ca образует гидрид CaH2 - ионное соединение, в котором водород является анионом. При 500°C Ca и азот дают нитрид Ca3N2; взаимодействие Ca с аммиаком на холоду приводит к комплексному аммиакату Ca [NH3]6. При нагревании без доступа воздуха с графитом, кремнием или фосфором Ca дает соответственно Карбид кальция CaC2, силициды CaSi2 и фосфид Ca3P2. Ca образует интерметаллические соединения с Al, Ag, Au, Cu, Li, Mg, Pb, Sn и др.
Получение и применение. В промышленности Ca получают двумя способами: 1) нагреванием брикетированной смеси CaO и порошка Al при 1200 °С в вакууме 0,01-0,02 мм рт. ст.; выделяющиеся по реакции: 6CaO +2Al = 3 СаО·l2O3 + 3Са пары Ca конденсируются на холодной поверхности; 2) электролизом расплава CaCl2 и KCl с жидким медно-кальциевым катодом приготовляют сплав Cu - Ca (65% Ca), из которого Ca отгоняют при температуре 950-1000 °С в вакууме 0,1-0,001 мм рт. ст.
В виде чистого металла Ca применяют как восстановитель U, Th, Cr, V, Zr, Cs, Rb и некоторых редкоземельных металлов из их соединений. Его используют также для раскисления сталей, бронз и др. сплавов, для удаления серы из нефтепродуктов, для обезвоживания органических жидкостей, для очистки аргона от примеси азота и в качестве поглотителя газов в электровакуумных приборах. Большое применение в технике получили Антифрикционные материалы системы Pb-Na-Ca, а также сплавы Pb-Ca, служащие для изготовления оболочки электрических кабелей. Сплав Ca-Si-Ca (силикокальций) применяется как раскислитель и дегазатор в производстве качественных сталей. О применении соединений К. см. в соответствующих статьях.
А. Я. Фишер, А. И. Перельман.
Кальций в организме. Ca - один из биогенных элементов, необходимых для нормального протекания жизненных процессов. Он присутствует во всех тканях и жидкостях животных и растений. Лишь редкие организмы могут развиваться в среде, лишённой Ca у некоторых организмов содержание Ca достигает 38%; у человека - 1,4-2%. Клетки растительных и животных организмов нуждаются в строго определённых соотношениях ионов Ca2+, Na+ и К+ во внеклеточных средах. Растения получают Ca из почвы. По их отношению к Ca растения делят на кальцефилов и кальцефобов. Животные получают Ca с пищей и водой. Ca необходим для образования ряда клеточных структур, поддержания нормальной проницаемости наружных клеточных мембран, для оплодотворения яйцеклеток рыб и др. животных, активации ряда ферментов.
Ионы Ca2+ передают возбуждение на мышечное волокно, вызывая его сокращение, увеличивают силу сердечных сокращений повышают фагоцитарную функцию лейкоцитов, активируют систему защитных белков крови, участвуют в её свертывании. В клетках почти весь Ca находится в виде соединений с белками, нуклеиновыми кислотами, фосфолипидами, в комплексах с неорганическими фосфатами и органическими кислотами. В плазме крови человека и высших животных только 20-40% Ca может быть связано с белками. У животных, обладающих скелетом, до 97-99% всего Ca используется в качестве строительного материала: у беспозвоночных в основном в виде CaCO3 (раковины моллюсков, кораллы), у позвоночных - в виде фосфатов. Многие беспозвоночные запасают Ca перед линькой для построения нового скелета или для обеспечения жизненных функции в неблагоприятных условиях.
Содержание Ca в крови человека и высших животных регулируется гормонами паращитовидных и щитовидной желёз. Важнейшую роль в этих процессах играет витамин D. Всасывание Ca происходит в переднем отделе тонкого кишечника. Усвоение Ca ухудшается при снижении кислотности в кишечнике и зависит от соотношения Ca, Р и жира в пище. Оптимальные соотношения Ca/P в коровьем молоке около 1,3 (в картофеле 0,15, в бобах 0,13, в мясе 0,016). При избытке в пище Р или щавелевой кислоты всасывание Ca ухудшается, Желчные кислоты ускоряют его всасывание. Оптимальные соотношения Са/жир в пище человека 0,04-0,08 г Ca на 1 г жира. Выделение Ca происходит главным образом через кишечник. Млекопитающие в период лактации теряют много Ca с молоком. При нарушениях фосфорно-кальциевого обмена у молодых животных и детей развивается Рахит, у взрослых животных - изменение состава и строения скелета (Остеомаляция).
И. А. Скульский.
В медицине применение препаратов Ca устраняет нарушения, связанные с недостатком ионов Ca2+ в организме (при тетании, спазмофилии, рахите). Препараты Ca снижают повышенную чувствительность к аллергенам и используются для лечения аллергических заболеваний (сывороточная болезнь, крапивница, ангионевротический отёк, сенная лихорадкаи др.). Препараты Ca уменьшают повышенную проницаемость сосудов и оказывают противовоспалительное действие. Их применяют при геморрагическом васкулите, лучевой болезни, воспалительных и экссудативных процессах (пневмония, плеврит, эндометрит и др.) и некоторых кожных заболеваниях. Назначают как кровоостанавливающие средства, для улучшения деятельности сердечной мышцы и усиления действия препаратов наперстянки; как слабые мочегонные и как противоядия при отравлении солями магния. Вместе с др. средствами препараты Ca применяют для стимулирования родовой деятельности. Хлористый кальций вводят через рот и внутривенно. Оссокальцинол (15%-ная стерильная суспензия особым образом приготовленного костного порошка в персиковом масле) предложен для тканевой терапии. К препаратам Ca относится также гипс (CaSO4), применяемый в хирургии для гипсовых повязок, и мел (СаСО3), назначаемый внутрь при повышенной кислотности желудочного сока и для приготовления зубного порошка.
Лит.: Краткая химическая энциклопедия, т. 2, М., 1963, с. 370-75; Родякин В. В., Кальций, его соединения и сплавы, М., 1967; Капланский С. Я., Минеральный обмен, М. - Л.,1938; Вишняков С. И., Обмен макроэлементов у сельскохозяйственных животных, М., 1967.

Кальциевый    Кальций    Кальцинирование