Почва

Значение слова Почва по Ефремовой:
Почва - 1. Поверхностный слой земной коры, в котором развивается растительная жизнь.
2. перен. Основа, опора.
3. Порода, на которой залегает полезное ископаемое.

Значение слова Почва по Ожегову:
Почва - Верхний слой земной коры


Почва Основа, основание; опора

Почва в Энциклопедическом словаре:
Почва - природное образование, состоящее из генетически связанныхгоризонтов, формирующихся в результате преобразования поверхностных слоевлитосферы под воздействием воды, воздуха и живых организмов (см.Почвообразовательный процесс); обладает плодородием (см. Плодородиепочвы). Состоит из твердой, жидкой (почвенный раствор), газообразной иживой (почвенные фауна и флора) частей. Подразделяется на генетическиетипы (напр., подзолистые, серые лесные, черноземы, сероземы).Географическое распределение почв на равнинах подчинено общим законамширотной зональности, а в горах - вертикальной поясности. В сельскомхозяйстве - основное средство производства.

Значение слова Почва по словарю Символизма:
Почва - Символизирует Мать-Землю, матку.

Значение слова Почва по словарю синонимов:
Почва - грунт

Значение слова Почва по словарю Ушакова:
ПОЧВА
почвы, мн. - спец., ж. 1. Верхй слой земной коры, в к-ром развивается растительная жизнь, поверхность земли. Рыть почву. Обработка почвы. Столбы ушли глубоко в почву. || Тот или иной состав, то или иное качество верхнего слоя земной коры в той или иной местности (с.-х.). Глинистая почва. Болотная почва. Черноземная почва. Плодородная почва. Классификация почв. Образчики почв. 2. Порода, на к-рой залегает полезное ископаемое (горн.). 3. перен., иногда в соединении со словами "под ногами", "под собой". никакой почвы. Оставить зыбкую почву непроверенных фактов. Создать или подготовить почву для переговоров. Стоять на почве или стать на почву материалистической философии. Оставаться на почве фактов. Нейтральная почва. Благоприятная почва для соглашения. 4. перен. Социальная среда (книжн.). Оторваться от своей почвы. Быть тесно связанным с родной почвой. На почв чего (книжн.) - вследствие, по причине чего-н., в силу условий, создаваемых чем-н. Осложнение на почве гриппа. Зондировать почву - см. зондировать.

Значение слова Почва по словарю Даля:
Почва
ж. (от почивать, лежать?) поверхность земли, верхний слой ее, по качеству своему, или | по возвышенью, уровню, как основанье местного уровня, подошва. Почва тучная, чернозем, растительный перегной, теплая, жаркая. Холодная почва, сырая, мок

Значение слова Почва по словарю Брокгауза и Ефрона:
Почва (санит.) — топографические условия и геологический характер П., обнаруживая существенное влияние на климат и на социальные и экономические условия населения, в значительной степени определяют состояние общественного здоровья. Наиболее типично влияние П. на заболеваемость населения обнаруживается по отношению к малярийным болезням (см.). Холера (см.) также находится в зависимости от характера местности; и так как нередко главная, а иногда даже единственная разница между поражаемыми и непоражаемыми местностями заключается в различном характере или временном состоянии П., то приходится допустить, что решающее влияние на появление эпидемии принадлежит П. Брюшной тиф (см.), по-видимому, также находится в зависимости от почвенных условий: появление или исчезновение его иногда обнаруживает явное совпадение с известными изменениями, происходящими в состоянии П. Есть основание предполагать, что и на распространение других болезней — летних детских поносов, дифтерита, легочной чахотки — местные почвенные условия остаются не без влияния, и что таким образом заболеваемость и смертность населения вообще не в малой степени зависит от характера той П., на которой оно живет. На это указывает и то улучшение общественного здоровья, которое замечается там, где заботятся об осушении П. и где, устройством целесообразной системы удаления нечистот, устраняют загрязнение П. разлагающимися органическими веществами (см. Оздоровление городов). Наибольшее значение, с санитарной точки зрения. имеют поверхностные слои П. и, главным образом, степень проходимости ее для воздуха и воды, влажность ее, присутствие в ней микроорганизмов (в особенности патогенных); степень загрязнения ее органическими веществами и ее температура. Наиболее нездоровыми местами мы должны признать наполненные наносной П. террасы или ложбины, в которых легко застаиваются вода и всякие нечистоты. Сырая П. с высоко стоящей почвенной водой, кроме того, неблагоприятно отзывается на домах, содействуя отсыреванию фундаментов и стен. Отношение П. к воздуху и к воде (см. выше). Между отдельными почвенными частицами, если П. не состоит из плотной каменистой породы, находятся небольшие пространства, так наз. скважины, или поры, размер которых зависит от величины почвенных зерен. Последняя же, на этом основании. имеет громадное влияние на степень проходимости П. для воздуха: чем крупнее зерно, чем больше, следовательно, размер отдельных пор, тем значительнее проходимость П. для воздуха — и наооборот. В мелкозернистых П. количество проходящего в единицу времени воздуха почти пропорционально давлению; при различной толщине слоя П., но одинаковом давлении, количество проходящего в единицу времени воздуха обратно пропорционально толщине слоя. Через крупный песок проходит в 20 тыс. раз больше воздуха, чем через мелкий. При взрыхлении П. проходимость ее для воздуха увеличивается. Проникновение же воды в поры П. уменьшает проходимость ее. Крупнозеррнистая почва не так скоро утрачивает свою проходимость для воздуха, как мелкозернистая; средний и мелкий песок становится совершенно непроходимым для воздуха уже в таком случае, если вода наполняет прибл. 2/3 его пор. Замерзание воды в порах П. уменыпает проницаемость последней для воздуха. — Почвенные частицы обладают известной гигроскопичностью; мелкозернистая, глинистая или перегнойная П. гораздо более гигроскопична, чем песок. Водоемкость П. (см.) и П. — физические свойства (см. выше). Быстрота испарения воды с поверхности П., при прочих равных условиях, зависит от качеств П.: быстрее всего вода испаряется с кварцевого песка, значительно медленнее с П., содержащей глину, и медленнее всего с чернозема. Быстрота испарения нарастает с размерами почвенных частиц. Примесь органических веществ в П. сильно удерживает влагу. В открытых местах вода скорее испаряется с поверхности П., чем в застроенных. Леса задерживают испарение воды с поверхности П. уже потому, что они уменьшают движение воздуха и инсоляцию П. солнечными лучами. Из более глубоких слоев П. вода теряется, посредством испарения, весьма медленно. Температура П. Санитарное значение термических условий П. основывается, с одной стороны, на том влиянии, которое П. оказывают на темп. воздуха и на климат вообще, а с другой — на значении их для жизнеспособности микроорганизмов, находящихся в поверхностных слоях П., а равно и для происходящих здесь химических процессов. См. ст. П. — темп. П. Почвенный воздух. Атмосферный воздух, проникнув в поры П., подвергается там различным изменениям. Почвенный воздух беден кислородом и богат углекислотой, в особенности много углекислоты содержится в загрязненной П. населенных мест (5 — 140‰). Наибольшее содержание этого газа в почвенном воздухе встречается, смотря по глубине, в июле, августе и сентябре; оно, по времени, совпадает с наибольшей температурой П. Все условия, благоприятствующие процессу разложения органических веществ в П., увеличивают содержание углекислоты в почвенном воздухе. Весьма вероятно,что находящиеся в П. микроорганизмы содействуют образованию углекислоты. Хорошо продуваемая ветром, крупнозернистая П. содержит меньше углекислоты, чем мелкозернистая. Дождь, закрывая поры П., увеличивает содержание углекислоты в почвенном воздухе. При одинаковой проходимости П. для воздуха, содержание углекислоты в почвенном воздухе может служить, до известной степени, мерилом чистоты П. или загрязнения ее разлагающимися органическими веществами. Другие газообразные продукты разложения этих веществ — аммиак, сернистый водород, углеводороды — или вовсе не встречаются в почвенном воздухе, даже при заведомом загрязнении П., или находятся там в ничтожных количествах; они немедленно по своем образовании вступают в прочные соединения с различными элементами П. (аммиак связывается углекислотой, сероводород — железом). В населенных местах к почвенному воздуху примешивается светильный газ, который, выступая через неплотности газопроводных труб и проникая вместе с почвенным воздухом в жилые помещения, может дать повод к отравлению людей. Запах газа в этом случае не указывает на грозящую опасность, так как светильный газ, проходя через П., более или менее теряет свой специфический запах. Чаще всего случаи отравления людей светильным газом, проникшим в жилые помещения вместе с почвенным воздухом, наблюдаются зимой, когда, в силу больших темп. разностей между воздухом в П. и в домах, почвенный воздух с особенной энергией устремляется по направлению к домам. Почвенный воздух сообщает колодезному воздуху большие количества углекислоты, чем и объясняется нередкая гибель людей, спускающихся в запущенные колодцы с целью очистки или ремонта их. Быстрота движения воздуха бывает больше в крупнозернистой, чем в мелкозернистой П. Двигательными силами являются темп. разницы и ветер, до известной степени, может быть, — и колебания атмосферного давления. Микроорганизмов в почвенном воздухе не встречается, если нет условий для распыления почвенных частиц. Содержание воды в П.; почвенная вода. Наибольшиея колебания влажности совершаются в самом верхнем слое П., где, под влиянием условий климата и погоды, нередко наблюдается переход от почти абсолютной сухости к полному насыщению П. водой. В санитарном отношении эти колебания в степени влажности самого верхнего слоя П. заслуживают тем большеого внимания, что именно этот слой больше всего подвергается загрязнению и именно в нем существует самая развитая органическая жизнь. Количество проходящих жидкостей (дождя, помоев и пр.) через поверхностные слои П. до почвенной воды зависит, с одной стороны, от условий климата и погоды (колич. атмосферных осадков, темп. воздуха), а с другой — от состояния самой П. (степень сухости, проходимость для воды). При мелкозернистой П. могут пройти месяцы и годы, пока дождевая вода или попавшие на поверхность П. помои не дойдут до почвенной воды, а потому в такой П. атмосферные осадки могут служить мерилом для степени увлажнения лишь самых поверхностных слоев ее. В общем, по мере удаления от поверхности вглубь П., количество воды уменьшается, что объясняется, отчасти, большим содержанием в поверхностном слое органич. веществ, поглощающих много воды и затрудняющих испарение ее. Примесь глины увеличивает содержание воды в почве. Грязная, насыпная П. городских улиц содержит больше воды, чем девственная песчаная П., а потому предохранение городской П. от засорения ее органическими отбросами представляет хорошее средство для осушения ее. С санитарной точки зрения высота стояния, а в особенности колебания почвенной воды, имеют значение, прежде всего, потому, что они могут там служить, до известной степени, мерилом для оценки влажности поверхностных слоев П., последняя же имеет известное отношение к органической жизни в П. и, по всей вероятности, к эпидемическому распространению некоторых заразных болезней. Продолжительные наблюдения, произведенные в Мюнхене и в некоторых других местах, показали, что эпидемические взрывы брюшного тифа с большим постоянством совпадают с низким стоянием почвенных вод, а след., со знач. колебаниями в степени влажности поверхностных слоев почвы. Высокое стояние почвенной воды делает местность болотистой и дает повод к отсыреванию подвальных помещений. — Для определения уровня почвенной воды можно пользоваться любым плавающим на воде предметом, привязанным к веревке. Для периодических и точных определений колебаний почвенных вод требуются специальные приборы (поплавок на медной перекинутой через блок цепочке, уравновешенной гирей; к цепочке приделана стрелка, двигающаяся по шкале). Иногда, для наблюдения колебаний почвенных вод на большом пространстве (напр., для составления проекта канализации какого-нибудь города), устраивается значительное количество буровых скважин. Загрязнение П. органическими веществами; самоочищение ее. В населенных местах поверхностные слои П. подвергаются постоянному загрязнению органическими отбросами — экскрементами людей и животных, помоями из кухонь, боен, прачечных и пр., плотными отбросами и сточными водами промышленных заведений. Лучшим мерилом степени загрязнения почвы органическими отбросами животного происхождения (наиболее опасными в санитарном отношении) служит количество органического азота и продуктов разложения азотосодержащих соединений — аммиака, азотистой и азотной кислот. В загрязненной веками П. старинных городов встречается 3 — 4, даже 7 — 9 и в исключительных случаях 10 — 18 граммов азота на 1 кг сухой почвы (Фодор, Бубнов, Савченко, Лялин и др.). Более всего подвергаются загрязнению поверхностные слои П., хотя иногда наибольшие количества азота находятся на глубине 3 — 4 арш. В центральных частях городов П. грязнее, чем на окраинах: в Москве загрязнение П. от центра к периферии знач. уменьшается (в Кремле и Китай-городе, в среднем, из многих проб было найдено 4,4 г азота на 1 кг сухой П., в Белом городе 2,4 г, в Земляном городе 1,6 г и в Замосковоречье 0,8 г (Лялин). Кроме азотистых начал, загрязненная П. городов содержит много органических веществ вообще, а равно и большие количества фосфорной кислоты (из мочи). Жидкие отбросы, попадая на поверхность П., непосредственно поглощаются ею и до известной степени в ней просачиваются; плотные же отбросы отчасти выщелачиваются дождем, отчасти увлекаются им в поры П. Последняя же, со своей стороны, обладает способностью не только задерживать, наподобие фильтра, взвешенные в проходящей через нее жидкости плотные частицы, но и выделять вещества из тех растворов, в которых они находятся; при этом поглотительное свойство П. распространяется не только на такие растворенные вещества, которые немедленно же вступают в химическое взаимодействие с какими-нибудь составными частями П., но и на другие тела, не имеющие никакого химического сродства с элементами П.; так, напр., последней поглощаются из своих растворов алкалоиды, красящие вещества (анилиновые краски), белковые вещества и продукты их разложения (лейцин, тирозин, мочевина и проч.), неорганизованные бродила (птиалин, эмульсин). Сила поверхностного притяжения, оказываемого частицами П. на посторонние вещества, зависит, прежде всего, от качества П., но затем и от природы проходящего через нее вещества, от скорости прохождения и от концентрации раствора: мелкозернистая П. поглощает лучше крупнозернистой; примесь орган. вешеств (чернозем, торф) увеличивает способность П. к поглощению; при большой скорости фильтрации и при знач. концентрации раствора поглощение совершается хуже, чем при медленной фильтрации и при слабых растворах; в пресыщенной П. дальнейшее поглощение прекращается. П. изменяет и перерабатывает их, как бы сложны они ни были. Процессы последовательного разложения, которым подвергаются орган. вещества в П., имеют характер либо тления (окисления), либо гниения (восстановления). В первом случае конечными продуктами разложения органической материи являются неорганические тела; из углерода получается углекислота, из водорода — вода, из азота — азотистая и азотная кислоты ("минерализация" орган. веществ). При преобладании процессов восстановления, разложение орган. веществ совершается медленно, минерализация отступает на задний план, являются аммиак, болотный газ, дурно пахнущие жирные кислоты, индол, скатол, лейцин, тирозин, иногда сероводород и т. п.; нельзя исключить и возможности образования птомаинов. Процессу минерализации блогоприятствуют пористая, хорошо вентилируемая П., умеренное содержание в ней влаги, темп. в 30 — 40°С, сильное разведение наливаемых на поверхность П. растворов. Наибольший интерес с санитарной точки зрения представляет минерализация азотосодержаших орган. веществ, так наз. "нитрификация" орган. азота, образование из него азотистой и азотной кислот. Этот процесс, по-видимому, имеет по преимуществу биологический характер, т. е. совершается под влиянием известных микроорганизмов. Уже Шлезинг и Мюнц показали, что П. можно лишить способности нитрифицировать органический азот, пропуская через нее хлороформ, убивающий организованные ферменты, и что в прокаленной П. превращение азота в окислы его не происходит. В новейшее время П. и Гр. Фракланд и Варрингтон нашли бактерию, обладающую способностью образовывать из аммиака азотистую кислоту. Гереус и Челли приписывают способность нитрифицировать орг. азот разным микроорганизмам. Многочисленные иссследования Виноградского показали, что образование азотистой кислоты из аммиака, и азотной кислоты из азотистой свойственно двум различным организмам, которые он, однако, причисляет не к бактериям, а к дрожжевым грибкам — нитромонады и нитрозомонады. О присутствии в П. восстанавливающих микроорганизмов еще мало известно. В очень загрязненной почве нитрификация органич. азота совершается медленно. Микроорганизмы в П. Поверхностные слои П. служат настоящим резервуаром для микроорганизмов; особенно богата органической жизнью загрязненная П. населенных мест, где количество микробов в 1 куб. стм. П. равняется иногда сотням тысяч и миллионам. В глубь П. количество зародышей быстро уменьшается, так как П. по отношению к ним, играет роль фильтра, и на глубине 3 — 4 метр. П. бывает чрезвычайно бедна микробами. Так же чиста в бактериальном отношении бывает и почвенная вода, если она не подвергается стороннему загрязнению. Среди невинных почвенных бактерий, главная деятельность которых заключается в постепенном разложении попадающих в П. орган. начал (см. выше), встречаются иногда и патогенные формысибиреязвенные бациллы, палочки столбняка, прочные кокки, бациллы злокачественной эдемы (Пастер, Кох, Nicolaier). Попавшие в П. патогенные микробы в большинстве случаев в ней хорошо сохраняются (Сойка, Уффельман, Фельтц, Шракамп и др.). Малостойкими оказываются палочки брюшного тифа, которые на поверхности П. скоро высыхают в погибают, но на некоторой глубине сохраняют свою жизнеспособность в течение нескольких недель (Karlinski). Холерные бациллы на поверхности П., при достаточной влажности и теплоте, могут развиваться быстро и в большом количестве, но они не долго выдерживают борьбу за существование с другими почвенными микробами. Переходу бактерий из более глубоких слоев П. на поверхность, по-видимому, содействуют дождевые червяки, а равно и капиллярное поднятие воды в П. (Пастер, Бухнер, Сойка). Переход микроорганизмов с поверхности П. в воздух совершается только при сухой П., вместе с поднимающимися под влиянием ветра, езды, ходьбы и проч., пылевыми частицами; при увлаживании П., переход бактерий в воздух сильно затрудняется или вовсе прекращается. Иследование П. на содержание в ней микробов производится обычными способами бактериологического исследования. Отыскивание патогенных форм посредством культивировки затруднительно благодаря присутствию огромного количества сапрофитов. Поэтому для исследования П. на патогенные микробы делают прививки, небольшими порциями испытуемой П., морским свинкам. Для добывания проб П. из более глубоких слоев пользуются земляным буравом Френкеля. Литература: Soyka, "Der Boden" (Pettenkofer und Ziemssen, "Handbuch der Hvgiene", 1887); Эрисман, "Курс гигиены" (I, 1887); Fodor, "Hygiene des Bodens" ("Handbuch d. Hygiene von Weyl", I, 1894); Fleck, "Berichte der chem. Centralstelle f. off. Gesundheitspflege"; "IV Годовой Отчет Моск. Гор. Санит. Станции" (1896). Много статей в "Zeitschr. f. Biologie", "Archiv f. Hygiene", "Zeitschrift f ü r Hygiene und Infektionskrankheiteu", а равно и в друг. журналах. Ф. Эрисман.

Определение слова «Почва» по БСЭ:
Почва - особое природное образование, обладающее рядом свойств, присущих живой и неживой природе; состоит из генетически связанных горизонтов (образуют почвенный профиль), возникающих в результате преобразования поверхностных слоев литосферы под совместным воздействием воды, воздуха и организмов; характеризуется плодородием (см. Плодородие почвы). Представление о П. как о самостоятельном природном теле с особыми свойствами, отличающими его от материнской (почвообразующей) породы, развивающемся в результате взаимодействия факторов почвообразования, было создано в последней четверти 19 в.
В. В. Докучаевым - основателем современного почвоведения. До этого П. обычно рассматривали в качестве одного из геологических образований. Плодородие почвы, т. е. способность обеспечивать растения водой и пищей, позволяет ей участвовать в воспроизведении биомассы (см. также Биологическая продуктивность). Природное плодородие имеет различный уровень, зависящий от состава и свойств П. и факторов почвообразования. Под влиянием агротехнических, агрохимических и мелиоративных воздействий П., являющаяся в сельском хозяйстве основным средством производства (см. Земля как средство производства), приобретает эффективное, или экономическое, плодородие, показателем которого служит урожайность с.-х. культур.
Основные факторы почвообразования - климат, материнская порода, растительный и животный мир, рельеф и геологический возраст территории, а также хозяйственная деятельность человека. Климат влияет на характер выветривания горных пород, воздействует на тепловой и водный режимы П., обусловливая проходящие в ней процессы и их интенсивность, и в значительной степени определяет растительный покров и животный мир. Материнская порода в процессе почвообразования превращается в П. От её гранулометрического (механического) состава и структурных особенностей зависят физические свойства П. - водо- и воздухопроницаемость, водоудерживающая способность и пр., а следовательно, Водный режим почвы, Тепловой режим почвы, воздушный режим, скорость передвижения веществ в П. и др.
Минералогический состав материнской породы определяет минералогический и химический состав П. и первоначальное содержание в ней элементов питания для растений. Растительность непосредственно воздействует на П.: корни рыхлят и оструктуривают почвенную массу, извлекают из неё минеральные элементы. В естественных условиях минеральные и органические вещества поступают в П. и на её поверхность в виде корневого и наземного опада. Годовое количество опада изменяется примерно от 5-6 ц/га в пустынях и 10 ц/га в арктических тундрах до 250 ц/га во влажных тропических лесах.
Различен и качественный состав опада: его зольность изменяется от 1 до 15%. В П. опад подвергается воздействию микрофлоры, минерализирующей до 80-90% его массы и участвующей в синтезе гумусовых веществ, которые образуются из продуктов распада и микробных метаболитов. Представители животного мира (главным образом беспозвоночные, живущие в верхних горизонтах П. и в растительных остатках на поверхности) в процессе жизнедеятельности значительно ускоряют разложение органических веществ и способствуют формированию органо-минеральных почвенных агрегатов, т. е. структуры П. Основное влияние рельефа заключается в перераспределении по земной поверхности климатических (влаги, тепла и их соотношения) и др. факторов формирования П. Время развития зрелого почвенного профиля для разных условий - от нескольких сотен до нескольких тысяч лет.
Возраст территории вообще и П. в частности, а также изменения условий почвообразования в процессе их развития оказывают существенное влияние на строение, свойства и состав П. При сходных географических условиях почвообразования П., имеющие неодинаковые возраст и историю развития, могут существенно различаться и принадлежать к разным классификационным группам. Хозяйственная деятельность человека влияет на некоторые факторы почвообразования, например на растительность (вырубка леса, замена его травянистыми фитоценозами и др.), и непосредственно на П. путём её механической обработки (см. Обработка почвы), мелиорации, внесения минеральных и органических удобрений и т.п. При соответствующем сочетании этих воздействий можно направленно изменять почвообразовательный процесс и свойства П. В связи с интенсификацией сельского хозяйства влияние человека на почвенные процессы непрерывно возрастает.
Состав и свойства почвы. П. состоит из твёрдой, жидкой, газообразной и живой частей. Соотношение их неодинаково не только в разных П., но и в различных горизонтах одной и той же П. Закономерно уменьшение содержания органических веществ и живых организмов от верхних горизонтов П. к нижним и увеличение интенсивности преобразования компонентов материнской породы от нижних горизонтов к верхним. В твёрдой части преобладают минеральные вещества. Первичные минералы (кварц, полевые шпаты, роговые обманки, слюды и др.) вместе с обломками горных пород образуют крупные фракции; вторичные минералы (гидрослюды, монтмориллонит, каолинит и др.), формирующиеся в процессе выветривания, - более тонкие. Рыхлость сложения П. обусловливается полидисперсностью состава её твёрдой части, включающей частицы разного размера (от коллоидов почвы, измеряемых сотыми долями мк, до обломков диаметром в несколько десятков см). Основную массу П. составляет обычно мелкозём - частицы менее 1 мм. Гранулометрический состав П. определяется относительным содержанием в ней частиц различной величины, объединяемых в группы - гранулометрические фракции. В СССР принята следующая классификация почвенных частиц по размерам:













Размер частиц, ммНаименование фракции
> 3Камни
3-1Гравий
1-0,5Песок крупный
0,5-0,25» средний
0,25-0,05» мелкий
0,05-0,01Пыль крупная
0,01-0,005» средняя
0,005-0,001» мелкая
0,001-0,0005Ил грубый
0,0005-0,0001» тонкий
< 0,0001Коллоиды

В зависимости от соотношения физической глины (частиц мельче 0,01 мм) и физического песка (крупнее 0,01 мм) П. по гранулометрическому составу разделяют на группы (разновидности): песок рыхлый и связный, супесь, суглинок лёгкий и средний, глина лёгкая, средняя и тяжёлая. Более подробное деление проводят по преобладанию среди частиц гравия, песка, крупной пыли, пыли и ила. В СССР чаще применяют классификацию П. по гранулометрическому составу, предложенную Н. А. Качинским.
Твёрдые частицы в естественном залегании заполняют не весь объём почвенной массы, а лишь некоторую его часть; др. часть составляют поры - промежутки различного размера и формы между частицами и их агрегатами. Суммарный объём пор называется пористостью П. Для большинства минеральных П. эта величина варьирует в пределах от 40 до 60%. В органогенных (торфяных) П. она возрастает до 90%, в заболоченных, оглеенных, минеральных - уменьшается до 27%. От пористости зависят водные свойства П. (водопроницаемость, водоподъёмная способность, влагоёмкость) и плотность П. В порах находятся почвенный раствор и почвенный воздух.
Соотношение их непрерывно меняется вследствие поступления в П. атмосферу осадков, иногда оросительных и грунтовых вод, а также расхода влаги - почвенного стока, испарения, десукции (отсасывание корнями растений) и др. Освобождающееся от воды поровое пространство заполняется воздухом. Этими явлениями определяется воздушный и водный режимы почвы. Чем больше поры заполнены влагой, тем затруднительнее газовый обмен (особенно О2 и СО2) между П. и атмосферой, тем медленнее протекают в почвенной массе процессы окисления и быстрее - процессы восстановления. В порах также обитают почвенные микроорганизмы. Плотность П. (или объёмная масса) в ненарушенном сложении определяется пористостью и средней плотностью твёрдой фазы. Плотность минеральных П. от 1 до 1, 6 г/смі, реже 1,8 г/смі, заболоченных оглеенных - до 2 г/смі, торфяных - 0,1-0,2 г/смі.
С дисперсностью сопряжена большая суммарная поверхность твёрдых частиц: 3-5 мІ/г у песчаных П., 30-150 мІ/г у супесчаных и суглинистых, до 300-400 мІ/г у глинистых. Благодаря этому почвенные частицы, особенно коллоидная и илистая фракции, обладают поверхностной энергией, которая проявляется в поглотительной способности почвы (см. также Почвенный поглощающий комплекс) и буферности почвы.
Минералогический состав твёрдой части П. во многом определяет её плодородие. Органических частиц (растительные остатки) содержится немного, и только торфяные П. почти полностью состоят из них. В состав минеральных веществ входят: Si, Al, Fe, К, N, Mg, Ca, Р, S; значительно меньше содержится микроэлементов: Cu, Mo, I, В, F, Pb и др. (см. также Биогеохимические провинции). Подавляющее большинство элементов находится в окисленной форме. Во многих П., преимущественно в П. недостаточно увлажняемых территорий, содержится значительное количество CaCO3 (особенно если П. образовались на карбонатной породе), в П. засушливых областей - CaSO4 и др. более легко растворимые соли; П, влажных тропических областей обогащены Fe и Al. Однако реализация этих общих закономерностей зависит от состава почвообразующих пород, возраста П., особенностей рельефа, климата и т.д.
Например, на основных изверженных породах формируются П. более богатые Al, Fe, щёлочноземельными и щелочными металлами, а на породах кислого состава - Si. Во влажных тропиках на молодых корах выветривания П. значительно беднее окислами железа и алюминия, чем на более древних, и по содержанию сходны с П. умеренных широт. На крутых склонах, где эрозионные процессы весьма активны, состав твёрдой части П. незначительно отличается от состава почвообразующих пород. В засоленных почвах содержится много хлоридов и сульфатов (реже нитратов и бикарбонатов) кальция, магния, натрия, что связано с исходной засоленностью материнской породы, с поступлением этих солей из грунтовых вод или в результате почвообразования.
В состав твёрдой части П. входит органическое вещество, основная (80-90%) часть которого представлена сложным комплексом из гумусовых веществ, или гумуса. Органическое вещество состоит также из соединений растительного, животного и микробного происхождения, содержащих клетчатку, лигнин, белки, сахара, смолы, жиры, дубильные вещества и т.п. и промежуточные продукты их разложения. При разложении органических веществ в П. содержащийся в них азот переходит в формы, доступные растениям. В естественных условиях они являются основным источником азотного питания растительных организмов. Многие органические вещества участвуют в создании органо-минеральных структурных отдельностей (комочков). Возникающая т. о. структура П. во многом определяет её физические свойства, а также водный, воздушный и тепловой режимы. Органо-минеральные соединения представлены солями, глинисто-гумусовыми комплексами, комплексными и внутрикомплексными (хелаты) соединениями гумусовых кислот с рядом элементов (в их числе Al и Fe). Именно в этих формах последние перемещаются в П.
Жидкая часть, т. е. почвенный раствор, - активный компонент П., осуществляющий перенос веществ внутри неё, вынос из П. и снабжение растений водой и растворёнными элементами питания. Обычно содержит ионы, молекулы, коллоиды и более крупные частицы, превращаясь иногда в суспензию.
Газообразная часть, или почвенный воздух, заполняет поры, не занятые водой. Количество и состав почвенного воздуха, в который входят N2, O2, CO2, летучие органические соединения и пр., не постоянны и определяются характером множества протекающих в П. химических, биохимических, биологических процессов. Например, количество CO2 в почвенном воздухе существенно меняется в годовом и суточном циклах вследствие различной интенсивности выделения газа микроорганизмами и корнями растений. Газообмен между почвенным воздухом и атмосферой происходит преимущественно в результате диффузии CO2 из П. в атмосферу и O2 в противоположном направлении.
Живая часть П. состоит из почвенных микроорганизмов (бактерии, грибы, актиномицеты, водоросли и др.) и представителей многих групп беспозвоночных животных - простейших, червей, моллюсков, насекомых и их личинок, роющих позвоночных и др. (см. Почвенная фауна). Активная роль живых организмов в формировании П. определяет принадлежность её к биокосным природным телам - важнейшим компонентам биосферы.
Процессы в почве. В процессе почвообразования материнская порода расчленяется на почвенные горизонты, которые образуют почвенный профиль. В поверхностных горизонтах накапливаются органическое вещество, азот и фосфор, обменные соединения алюминия, кальция, магния, калия, натрия; во многих случаях происходит потеря силикатных соединений (за исключением кремнезёма в форме кварца). Под влиянием факторов почвообразования в П. протекают разнообразные процессы, которые можно объединить в следующие основные группы: 1) обмен веществами и энергией между П. и др. природными телами; 2) процессы превращения веществ и энергии, происходящие в самом почвенном теле без перемещения веществ; 3) процессы передвижения веществ и энергии в П. (см. также Круговорот веществ на Земле).
К первой группе относят: многосторонний обмен газами, влагой и твёрдыми частицами в системе атмосфера - П. - растительность (надземные органы); двусторонний обмен газами и влагой с растворёнными в ней веществами в системе П. - грунт (породы, залегающие под П., включая почвообразующую и подстилающую); обмен коротко- и длинноволновой радиацией в системе солнце - растительность - П. - атмосфера - космическое пространство; многосторонний обмен тепловой энергией в системе атмосфера - растительность - П. - грунт; двусторонний обмен зольными веществами, соединениями азота, CO2 и O2 в системе П. - высшая растительность; преимущественно одностороннее поступление влаги из П. в растения (через корни); одностороннее поступление в П. органического вещества, синтезированного высшими растениями, несущего в себе аккумулированную энергию.
Вторая группа включает огромное количество весьма разнообразных процессов: разложение органических соединений и синтез гумусовых веществ; синтез и распад микробной плазмы; образование и распад органо-минеральных соединений, т. е. процессы, связанные с круговоротом углерода (разложение углеводов, дубильных веществ, лигнина и др.); процессы, связанные с круговоротом азота, - Аммонификация, Нитрификация и Денитрификация, фиксация атмосферного азота (см. Азотфиксация); разложение и превращение первичных и вторичных минералов и синтез вторичных; окисление и восстановление, особенно железа и марганца; замерзание и оттаивание почвенной влаги, её внутрипочвенное испарение, конденсация и т.д. Третья группа: передвижение почвенного воздуха под влиянием меняющихся давления и температуры; диффузное передвижение газов и водяного пара, передвижение почвенного раствора под действием силы тяжести, капиллярных, сорбционных и осмотических сил; передвижение почвенной массы роющими животными, под влиянием давления корней и др.
Почвенные процессы протекают в тесной взаимосвязи и взаимозависимости, охватывая всю почвенную толщу или сосредоточиваясь в отдельных частях. Происходят они в гравитационном поле Земли, имеют циклический характер, сопряжённый с цикличностью поступления на поверхность П. радиационной энергии (суточные, годовые и многолетние циклы) и с биологической цикличностью живых организмов. Цикличность процессов не означает полного возврата П. в исходное состояние. Результаты циклических процессов, происходящих в почвенной массе с самого начала формирования, и определяют становление, развитие и эволюцию П. Существо процессов, их интенсивность в разных объёмах П. неодинаковы, большое влияние на них оказывает глубина от поверхности. П. как открытая система связана также с др. природными системами (атмосферой, грунтом, живыми организмами) взаимным и многосторонним обменом веществ.
Совокупности процессов формирования определённых почвенных горизонтов получили наименование элементарных почвенных процессов: образование степного войлока, лесной подстилки, торфа (накопление органических остатков на поверхности П.); гумусово-аккумулятивный процесс (накопление органо-минеральных соединений и зольных элементов в верхних горизонтах); засоление П. (передвижение солей в растворённом состоянии с последующим выпадением из раствора); расселение (вынос растворённых солей в нижние горизонты или за пределы П.); оглинивание, т. е. превращение первичных минералов во вторичные глинистые минералы (разложение первичных минералов и синтез вторичных); иллювиальные процессы (растворение различных веществ в верхних горизонтах П., перемещение растворов в более глубокие горизонты с осаждением некоторых веществ и их аккумуляцией); лессиваж - передвижение под влиянием силы тяжести мельчайших твёрдых частиц в составе суспензии; оглеение (восстановление элементов с переменной валентностью, в первую очередь железа и марганца, и связанное с этим обесструктуривание почвенной массы), осолонцевание, осолодение, оподзоливание, ожелезнение, ферралитизация, педокриогенез и др.
Основные типы почв и их распространение. Изменчивость в пространстве и во времени факторов почвообразования, а следовательно, и процессов, происходивших в П. в прошлом и совершающихся в настоящем, обусловливает большое разнообразие их в природе. До Докучаева П. классифицировали по отдельным свойствам - химическому составу, гранулометрическому составу и др. В основе современной генетической классификации П. лежит строение почвенного профиля, отражающее совокупность процессов становления, развития, эволюции П. и их режимы. Основная классификационная единица - генетический тип. Докучаевым выделялось 10 почвенных типов, в современных классификациях - более 100. Типы подразделяют на подтипы, роды, виды, разновидности, разряды и объединяют в классы, ряды, формации, генерации, семейства, ассоциации и т.п.
Принцип объединения почвенных типов в более высокие единицы в различных классификациях неодинаков: экологический - по условиям почвообразования, эволюционно-генетический (или историко-генетический) - по связям между группами П., профильно-генетический - по строению почвенных профилей, их генезису и др. Важной частью почвенной классификации является диагностика П. - система объективных признаков, позволяющих разделять их на всех таксономических уровнях классификации. Особое значение имеют диагностические признаки для определения типов и более низких таксономических единиц, т.к. на большинстве почвенных карт выделяют именно их ареалы. Большое практическое значение имеют прикладные (агропроизводственные, мелиоративные, лесоводственные и др.) группировки почв.
Единая международная классификация П. не разработана. Создано значительное число национальных почвенных классификаций; некоторые из них (СССР, США, Франция) включают все П. мира. Первая попытка создания мировой системы П. сделана ФЛО - ЮНЕСКО (1968-74) при составлении Международной почвенной карты мира.
Прилагаемая почвенная карта мира (см. карту) составлена на основе классификации П., разработанной в СССР. Преобладающая часть суши занята сравнительно ограниченным числом почвенных групп, преимущественных типов (выделены на карте), которые относились В. В. Докучаевым и Н. М. Сибирцевым к группе т. н. зональных П., возникающих под влиянием типичного для каждой природной зоны почвообразования. Характер размещения зональных П. на поверхности суши обширными полосами - зонами, вытянутыми вдоль полос с близким атмосферным увлажнением (в областях с недостаточным увлажнением) и с одинаковой годовой суммой температур (в областях с достаточным и избыточным увлажнением), создаёт основную закономерность пространственного распределения П. на равнинных территориях - горизонтальную почвенную зональность (широтную или меридианальную).
Например, на Восточно-Европейской равнине отчётливо выражены широтные зоны тундровых почв, подзолистых почв, серых лесных почв, чернозёмов, каштановых почв, бурых пустынно-степных почв. Ареалы подтипов зональных П. располагаются внутри зон также параллельными полосами, что позволяет выделить почвенные подзоны. Так, зона чернозёмов подразделяется на подзоны выщелоченных, типичных, обыкновенных и южных чернозёмов, зона каштановых почв - на темно-каштановые, каштановые и светло-каштановые.
В работах И. П. Герасимова и других учёных были установлены закономерные изменения свойств П. внутри зон и подзон, связанные с изменениями климата и некоторых др. биоклиматических условий. Это явление получило название провинциальности и фациальности и позволило выделить внутри зон и подзон провинции, а аналогичные провинции нескольких зон и подзон объединить в фации. Были выявлены различия рядов почвенных зон на разных континентах и крупных частях наиболее обширных континентов. Например, в восточной части Азии с С. на Ю. сменяются зоны тундровых, мерзлотно-таёжных, подзолистых почв и подбуров, бурых лесных почв, коричневых почв сухих лесов и кустарников, желтозёмов, краснозёмов, красно-жёлтых ферралитных П., а в центральной части (Западная Сибирь, Казахстан, Средняя Азия) - зоны тундровых почв, поверхностно-глеевых и подзолистых П., чернозёмов, каштановых, бурых пустынно-степных, серо-бурых пустынных П., серозёмов. Такие различия позволяют выделять почвенные области, каждая из которых характеризуется определённым рядом горизонтальных почвенных зон.
В горных странах отчётливо выражена высотная поясность П. В горах с недостаточным увлажнением смена вертикальных поясов обусловливается сменой степени увлажнения, а также экспозицией склонов (почвенный покров здесь приобретает экспозиционно-дифференцированный характер), а в горах с достаточным и избыточным увлажнением - изменением термических условий.
Рассмотренные почвенно-географической закономерности, обусловленные главным образом биоклиматическими факторами, создают зонально-провинциальное строение почвенного покрова. Однако внутри зон, подзон и провинций почвенный покров неоднороден. В нём наблюдаются более или менее частые смены П., связанные со сменой рельефа, почвообразующих пород, глубиной залегания грунтовых вод, т. е. зависящие главным образом от литолого-геоморфологических факторов. Эти смены в разной степени генетически связанных ареалов П., образующих определённый рисунок почвенного покрова, создают его структуру, все компоненты которой могут быть показаны лишь на крупномасштабных или детальных почвенных картах. Различные структуры почвенного покрова приурочены к определённым литолого-геоморфологическим и неотектоническим структурам, что отчётливо доказывает их тесную генетическую связь.
П. - один из природных компонентов, составляющих среду обитания человека. Нарушение почвенных процессов в результате неправильной эксплуатации почвенного покрова приводит к усиленной эрозии почвы, её засолению и заболачиванию. Принятые
«Основы земельного законодательства Союза ССР и союзных республик» (1968) предусматривают систему мер, направленных на повышение плодородия П. и охрану её от эрозии. О мероприятиях по предупреждению загрязнения почв см. в ст. Санитарная охрана почвы.
Лит.: Докучаев В. В., Учение о зонах природы и классификация почв, Соч., т. 6, М. - Л., 1951; Неустроен С. С., Элементы географии почв, 2 изд., М. - Л., 1931; Гедройц К, К., Учение о поглотительной способности почвы, М., 1933; Прасолов Л. И., К вопросу о классификации и номенклатуре почв,
«Труды Почвенного института АН СССР», 1936, т. 13; Полынов Б. Б., Избр. труды, М., 1956; Герасимов И. П., Мировая почвенная карта и общие законы географии почв, «Почвоведение», 1945, № 3-4; Розов Н. Н., Развитие учения В. В. Докучаева о зональности почв в современный период,
«Изв. АН СССР, сер. географии», 1954, № 4; Фридланд В. М., К вопросу о факторах зональности, там же, 1959, № 5; Герасимов И. П., Глазовская М. А., Основы почвоведения и география почв, М., 1960; Волобуев В. Р., Экология почв, Баку, 1963; Кононова М. М., Органическое вещество почвы, М., 1963; Возбуцкая А. Е., Химия почвы, 2 изд.. М., 1964; Нерпин С. В., Чудновский А. Ф., Физика почвы, М., 1967; Фридланд В. М., Структура почвенного покрова, М., 1972; Глазовская М. А., Почвы мира, ч. 1-2, М., 1972-73; Ковда В. А., Основы учения о почвах, кн. 1-2, М., 1973.
А. А. Роде, В. М. Фридланд.
К ст. Почва.
20/2003902.jpg

20/2003903.jpg

Почахнуть    Почва    Почваниться