Фотометрия

Значение слова Фотометрия по Ефремовой:
Фотометрия - Раздел оптики, занимающийся измерением световых величин.

Фотометрия в Энциклопедическом словаре:
Фотометрия - (от фото... и ...метрия) -..1) совокупность методов измеренияэнергетических характеристик электромагнитного излучения и световыхвеличин: освещенности, силы света, светового потока, яркости и др...2)Измерение интенсивности излучений и потоков заряженных частиц по величинепочернения, вызываемого ими в светочувствительном слое.

Значение слова Фотометрия по словарю медицинских терминов:
фотометрия (фото- греч. metreo измерять) - совокупность методов измерения энергетических параметров оптического излучения, характеризующих процессы его испускания, распространения, поглощения и рассеяния.

Значение слова Фотометрия по словарю Ушакова:
ФОТОМЕТРИЯ
фотометрии, мн. нет, ж. (от греч. phos - свет и metreo - измеряю). 1. Измерение силы света; Отдел оптики, занимающийся измерением силы света, яркости источников света (физ.). 2. Отдел астрономии, занимающийся определением яркости звезд (астр.).

Определение слова «Фотометрия» по БСЭ:
Фотометрия (от фото... и ...метрия)
раздел физической оптики, в котором рассматриваются энергетические характеристики оптического излучения, испускаемого источниками, распространяющегося в различных средах и взаимодействующего с телами. При этом энергия электромагнитных колебаний оптического диапазона усредняется по малым интервалам времени, которые, однако, значительно превышают период таких колебаний. Ф. охватывает как экспериментальные методы и средства измерений фотометрических величин, так и относящиеся к этим величинам теоретические положения и расчёты.
Основным энергетическим понятием Ф. является Поток излучения Фе, имеющий физический смысл средней мощности, переносимой электромагнитным излучением. Пространственное распределение Фе описывают Энергетические фотометрические величины, производные от потока излучения по площади и (или) телесному углу. В фотометрии импульсной применяются также интегральные по времени фотометрические величины. В узком смысле Ф. иногда называют измерения и расчёт величин, относящихся к наиболее употребительной системе редуцированных фотометрических величин - системе световых величин (освещённости, силы света, яркости, освечивания, светимости и пр.; соответствующие энергетические фотометрические величины - энергетическая освещённость, энергетическая сила света, энергетическая яркость и т.д.).
Световые величины - это фотометрические величины, редуцированные в соответствии со спектральной чувствительностью т. н. среднего светлоадаптированного человеческого глаза (важнейшего для деятельности человека приёмника света; см. Адаптация физиологическая; об условиях, при которых получают характеристики среднего глаза как приёмника, см. ст. Световые величины). Применяются и др. системы редуцированных (по отношению к др. приёмникам) фотометрических величин: эритемные, бактерицидные, фотосинтетические. Изучение зависимостей фотометрических величин от длины волны излучения и спектральных плотностей энергетических величин составляет предмет спектрофотометрии и спектрорадиометрии. Методы Ф. широко применяются в астрономии для исследования космических источников излучения в различных диапазонах спектра излучения (см. Астрофотометрия, Показатель цвета). Сведение Ф. лишь к измерениям световых величин ошибочно.
Фундаментальный для Ф. закон Е = I/lІ, согласно которому освещённость Е изменяется обратно пропорционально квадрату расстояния l от точечного источника с силой света I был сформулирован И. Кеплером в 1604. Однако основоположником экспериментальной Ф. следует считать П. Бугера, который опубликовал в 1729 описание визуального метода количественного сравнения источников света - установления (путём изменения расстояний до источников) равенства освещённостей соседних поверхностей с использованием в качестве прибора глаза. Методы визуальной Ф. применяются в отдельных случаях до настоящего времени (2-я половина 20 в.) и в результате работ сов. учёных, которые ввели понятие т. н. эквивалентной яркости, распространены на область малых яркостей. В зависимости от используемых методов измерения фотометрических величин Ф. условно делят на визуальную, фотографическую, фотоэлектрическую, фотохимическую и так далее.
Начатое И. Ламбертом (1760) развитие теоретических методов Ф. нашло обобщённое выражение в теории светового поля, доведённой до стройной системы сов. учёным А. А. Гершуном (30-е гг. 20 в.). Современная теоретическая Ф. распространена на Мутные среды. Теоретическая Ф. основывается на соотношениие = LedG, выражающем в дифференциальной форме закон квадратов расстояний; здесье - дифференциал потока излучения элементарного пучка лучей, мерой множества которых (см. Мера множества) является дифференциал dG фактора геометрического, Le - энергетическая яркость излучения. Фотометрические свойства веществ и тел характеризуются Пропускания коэффициентами
τ, Отражения коэффициентами ρ и Поглощения коэффициентами α, которые для одного и того же тела связаны очевидным соотношением τ + ρ + α = 1. Ослабление потока излучения узконаправленного пучка при прохождении через вещество описывается Бугера - Ламберта - Бера законом.
Экспериментальные методы Ф. основаны на абсолютных и относительных измерениях потока излучения различными селективными и неселективными приёмниками излучения (т. е. приёмниками, реакция которых зависит или не зависит от длины волны излучения). Для определения размерных фотометрических величин применяют либо Фотометры с непосредственным сравнением неизвестного и известного потоков, либо фотометры, предварительно градуированные в соответствующих единицах измерения энергетических или редуцированных фотометрических величин. В частности, для передачи значений световых величин обычно используют сличаемые с государственными световыми эталонами образцовые и рабочие светоизмерительные лампы - источники с известными фотометрическими характеристиками. Ф. лазерного излучения в основном построена по принципу использования образцовых и рабочих спектрально неселективных приёмников излучения, сличаемых с государственными эталонами мощности и энергии когерентного излучения Лазеров. Измерение безразмерных величин
τ и ρ выполняется фотометрами с применением относительных методов, путём регистрации отношения реакций линейного приемника излучения на соответствующие потоки излучения. Применяется также уравнивание реакций линейного или нелинейного приёмника излучения изменением по определённому закону в известное число раз сравниваемых потоков излучения.
Теоретические и экспериментальные методы Ф. находят применение в светотехнике и технике сигнализации, в астрономии и астрофизике, при расчёте переноса излучения в плазме газоразрядных источников света и звёзд, при химическом анализе веществ, в пирометрии, при расчётах Теплообмена излучением и во многих др. областях науки и производства.
Лит.: Бугер П., Оптический трактат о градации света, пер. с франц., М., 1950; Гершун А. А., Избр. труды по фотометрии и светотехнике, М., 1958; Мешков В. В., Основы светотехники, ч. 1-2, М. - Л., 1957-61; Тиходеев П. М., Световые измерения в светотехнике. (Фотометрия), 2 изд., М. - Л., 1962; Волькенштейн А. А., Визуальная фотометрия малых яркостей, М. - Л., 1965; Сапожников Р. А., Теоретическая фотометрия, 2 изд., Л., 1967; Гуревич М. М., Введение в фотометрию, Л., 1968.
А. С. Дойников.

Фотометрический Анализ    Фотометрия    Фотомеханика