Аналитическая Геометрия

Аналитическая Геометрия в Энциклопедическом словаре:
Аналитическая Геометрия - раздел геометрии, в котором свойствагеометрических образов (точек, линий, поверхностей) устанавливаютсясредствами алгебры при помощи метода координат, т. е. путем изучениясвойств уравнений, графиками которых эти образы являются. В аналитическойгеометрии исследуются линии (поверхности) 1-го и 2-го порядков. Линии(поверхности) 1-го порядка - прямые (плоскости); среди линий(поверхностей) 2-го порядка - эллипсы, гиперболы, параболы (эллипсоиды,гиперболоиды, параболоиды). Аналитическую геометрию впервые изложил в 1-йпол. 17 в. Р. Декарт.

Значение слова Аналитическая Геометрия по словарю Брокгауза и Ефрона:
Аналитическая геометрия — см. Геометрия.

Определение «Аналитическая Геометрия» по БСЭ:
Аналитическая геометрия - раздел геометрии. Основными понятиями А. г. являются простейшие геометрические образы (точки, прямые, плоскости, кривые и поверхности второго порядка). Основными средствами исследования в А. г. служат метод координат (см. ниже) и методы элементарной алгебры. Возникновение метода координат тесно связано с бурным развитием астрономии, механики и техники в 17 в. Отчётливое и исчерпывающее изложение этого метода и основ А. г. было сделано P. Декартом в его
«Геометрии» (1637). Основные идеи метода были известны также его современнику П. Ферма. Дальнейшая разработка А. г. связана с трудами Г. Лейбница, И. Ньютона и особенно Л. Эйлера. Средствами А. г. пользовался Ж. Лагранж при построении аналитической механики и Г. Монж в дифференциальной геометрии. Ныне А. г. не имеет самостоятельного значения как наука, однако её методы широко применяются в различных разделах математики, механики, физики и др. наук.
Сущность метода координат заключается в следующем. Рассмотрим, например, на плоскости π две взаимно перпендикулярные прямые Ox и Оу (рис. 1). Эти прямые с указанным на них направлением, началом координат О и выбранной масштабной единицей е образуют т. н. декартову прямоугольную систему координат Оху на плоскости. Прямые Ox и Оу называются соответственно осью абсцисс и осью ординат. Положение любой точки М на плоскости по отношению к этой системе Оху можно определить следующим образом. Пусть Mx и My - проекции М на Ox: и Оу, а числа x и y - величины отрезков OMx и ОМу (величина x отрезка OMx, например, равна длине этого отрезка, взятой со знаком плюс, если направление от O к Mx совпадает с направлением на прямой Ox, и со знаком минус в противоположном случае). Числа x и y называются декартовыми прямоугольными координатами точки М в системе Оху. Обычно они называются соответственно абсциссой и ординатой точки M. Для обозначения точки М с абсциссой x и ординатой y пользуются символом М(x,y). Ясно, что координаты точки М определяют её положение относительно системы Оху.
Пусть на плоскости π с данной декартовой прямоугольной системой координат Оху задана некоторая линия L. Используя понятие координат точек, можно ввести понятие уравнения данной линии L относительно системы Оху как соотношения вида F(x,y) = 0, которому удовлетворяют координаты x и y любой точки M, расположенной на L, и не удовлетворяют координаты каждой точки, не лежащей на L. Если, например, линия L является окружностью радиуса R с центром в начале координат O, то уравнение xІ+ y2 - RІ = 0 будет уравнением рассматриваемой окружности, в чём можно убедиться, обратившись к рис. 2. Если точка М лежит на окружности, то по теореме Пифагора для треугольника OMMx получается xІ + y2 - RІ = 0. Если же точка не лежит на окружности, то, очевидно, xІ + yІ - RІ ≠ 0.
Итак, линии L на плоскости можно сопоставить её уравнение F(x,y) = 0 относительно системы координат Оху.
Основная идея метода координат на плоскости состоит в том, что геометрические свойства линии L выясняются путём изучения аналитическими и алгебраическими средствами свойств уравнения F(x,y) = 0 этой линии. Например, применим метод координат для выяснения числа точек пересечения окружности С радиуса R и данной прямой линии В (рис. 3). Пусть начало системы координат Оху находится в центре окружности, а ось Ox направлена перпендикулярно прямой В. Так как прямая В перпендикулярна оси Ox, то абсцисса любой точки этой прямой равна некоторой постоянной a. Т. о., уравнение прямой В имеет вид x - a = 0. Координаты (x,y) точки пересечения окружности С (ур-ние которой имеет вид xІ + y2 - RІ = 0) и прямой В удовлетворяют одновременно уравнениям
xІ + yІ - RІ = 0, x - а = 0, (1)
то есть являются решением системы (1). Следовательно, геометрический вопрос о числе точек пересечения прямой и окружности сводится к аналитическому вопросу о числе решений алгебраической системы (1). Решая эту систему, получают х = a, у = ± R2 - aІ.
Итак, окружность и прямая могут пересекаться в двух точках (RІ > aІ) (этот случай изображен на рис. 3), могут иметь одну общую точку (RІ = aІ) (в этом случае прямая В касается окружности C) и не иметь общих точек (RІ < aІ) (в этом случае прямая В лежит вне окружности C).
В А. г. на плоскости подробно изучаются геометрические свойства Эллипса, гиперболы и параболы, представляющих собой линии пересечения кругового конуса с плоскостями, не проходящими через его вершину (см. Конические сечения). Эти линии часто встречаются во многих задачах естествознания и техники. Например, движение материальной точки под воздействием центрального поля силы тяжести происходит по одной из этих линий; в инженерном деле для конструирования прожекторов, антенн и телескопов пользуются важным оптическим свойством параболы, заключающимся в том, что лучи света, исходящие из определённой точки (фокуса параболы), после отражения от параболы образуют параллельный пучок.
В А. г. на плоскости систематически исследуются т. н. алгебраические линии первого и второго порядков (эти линии в декартовых прямоугольных координатах определяются соответственно алгебраическими уравнениями первой и второй степени). Линии первого порядка суть прямые, и обратно, каждая прямая определяется алгебраическим уравнением первой степени Ax + By + С = 0. Линии второго порядка определяются уравнениями вида AxІ + Вху + СуІ + Dx + Еу + F = 0. Основной метод исследования и классификации этих линий заключается в подборе такой декартовой прямоугольной системы координат, в которой уравнение линии имеет наиболее простой вид, и последующем исследовании этого простого уравнения. Можно доказать, что таким способом уравнение любой вещественной линии второго порядка может быть приведено к одному из следующих простейших видов:




+



= 1,  







= 1,


yІ = 2px,  







= 0,   xІ = aІ.

Первое из этих уравнений определяет эллипс, второе - гиперболу, третье - параболу, а последние два - пару прямых (пересекающихся, параллельных или слившихся).
В А. г. в пространстве также пользуются методом координат. При этом декартовы прямоугольные координаты.x, y и z (абсцисса, ордината и апликата) точки М вводятся в полной аналогии с плоским случаем (рис. 4). Каждой поверхности S в пространстве можно сопоставить её уравнение F (x, y, z) =0 относительно системы координат Oxyz. (Так, например, уравнение сферы радиуса R с центром в начале координат имеет вид xІ + yІ + zІ - RІ = 0.) При этом геометрические свойства поверхности S выясняются путём изучения аналитическими и алгебраическими средствами свойств уравнения этой поверхности.
Линию L в пространстве задают как линию пересечения двух поверхностей S1 и S1. Если F1(x, y, z) = 0 и F2(x, y, z) = 0 - уравнения S1 и S2, то пара этих уравнений, рассматриваемая совместно, представляет собой уравнение линии L. Например, прямую L в пространстве можно рассматривать как линию пересечения двух плоскостей. Так как плоскость в пространстве определяется уравнением вида Ax + By + Cz + D = 0, то пара уравнений такого вида, рассматриваемая совместно, представляет собой уравнение прямой L. Т. о., метод координат может применяться и для исследования линий в пространстве. В A. г. в пространстве систематически исследуются т. н. алгебраические поверхности первого и второго порядков. Выясняется, что алгебраическими поверхностями первого порядка являются лишь плоскости. Поверхности второго порядка определяются уравнениями вида:
AxІ + ByІ + CzІ + Dxy + Eyz + Fxz + Gx + Ну + Mz + N = 0.
Основной метод исследования и классификации этих поверхностей заключается в подборе такой декартовой прямоугольной системы координат, в которой уравнение поверхности имеет наиболее простой вид, и последующем исследовании этого простого уравнения. Важнейшими вещественными поверхностями второго порядка являются Эллипсоиды, однополостный и двуполостный гиперболоиды, эллиптический и гиперболический Параболоиды. Эти поверхности в специально выбранных декартовых прямоугольных системах координат имеют следующие уравнения:




+



+



= 1   (эллипсоид)



+







= 1   (однополостный гиперболоид)



+







= −1   (двуполостный гиперболоид)


2z =



+



  (эллиптич. параболоид)
2z =







  (гиперболич. параболоид)

Перечисленные важнейшие поверхности второго порядка часто встречаются в различных вопросах механики, физики твёрдого тела, теоретической физике и инженерном деле. Так, при изучении напряжений, возникающих в твёрдом теле, пользуются понятием т. н: эллипсоид напряжений. В различных инженерных сооружениях применяются конструкции в форме гиперболоидов и параболоидов.
Лит.: Декарт Р., Геометрия, [пер. с франц.], М.-Л., 1938; Вилейтнер Г., История математики от Декарта до середины XIX столетия, пер. с нем., 2 изд., М., 1966; Ефимов Н. В., Краткий курс аналитической геометрии, 9 изд., М., 1967; Ильин В. А., Позняк Э. Г., Аналитическая геометрия, М., 1967; Александров П. С., Лекции по аналитической геометрии, М., 1968; Бахвалов С. В., Моденов П. С., Пархоменко А. С., Сборник задач по аналитической геометрии, 3 изд., М., 1964; Клетеник Д. В., Сборник задач по аналитической геометрии, 9 изд., М., 1967.
Э. Г. Позняк.
Рисунки 1, 2, 3 к ст. Аналитическая геометрия.

Рис. 4. к ст. Аналитическая геометрия.

Аналитика    Аналитическая Геометрия    Аналитическая Гипотеза Формирования Вкусовых