Численное Решение Уравнений
Численное Решение Уравнений в Энциклопедическом словаре:
Численное Решение Уравнений - нахождение приближенных численных решенийалгебраических и трансцендентных уравнений, в отличие от решений,выражаемых формулами. Численное решение уравнений сводится к выполнениюарифметических операций над коэффициентами уравнений и значениями входящихв него функций и позволяет найти решение уравнений с любой напередзаданной точностью. К численному решению уравнений сводятся многие задачиматематики и ее приложений.
Определение «Численное Решение Уравнений» по БСЭ:
Численное решение уравнений - нахождение приближённых решений алгебраических и трансцендентных уравнений. Ч. р. у. сводится к выполнению арифметических операций над коэффициентами уравнений и значениями входящих в него функций и позволяет найти решения уравнений с любой наперёд заданной точностью. К Ч. р. у. сводятся многие задачи математики и её приложений. Хотя общие методы Ч. р. у. появились лишь в 17 в. (И. Ньютон), но ещё Леонардо Пизанский (начало 13 в.) вычислил корень уравнения xі + 2xІ + 10x = 20 с ошибкой, меньшей чем 29/2901455.tif В конце 16 в. И. Бюрги (Швейцария) вычислил корень уравнения 9 - 30xІ + 27x4 - 9x6 + x8 = 0, определяющего длину стороны правильного девятиугольника. Приблизительно в то же время Ф. Виет дал метод вычисления корней алгебраических уравнений, сходный с Ньютона методом.
Численное решение алгебраических уравнений разбивается на следующие этапы: 1) выделение кратных корней, сводящее задачу к решению уравнения с простыми корнями; 2) определение границ, между которыми могут лежать корни уравнения; 3) разделение корней, т. е. указание промежутков, каждый из которых содержит не более одного простого корня (см. Штурма правило); 4) грубое определение приближённого значения корня, выполняемое графически или каким-либо иным способом (например, при помощи изучения перемен знака левой части уравнения); 5) вычисление корня с заданной точностью. Наиболее распространёнными методами для этого являются методы ложного положения, метод Ньютона, Лобачевского метод, последовательных приближений метод, разложение в ряды и т.д.
При численном решении трансцендентных уравнений ограничиваются этапами 4 и 5. О численном решении дифференциальных уравнений см. в ст. Приближённое решение дифференциальных уравнений.
Лит.: Энциклопедия элементарной математики, кн. 2 - Алгебра, М.-Л., 1951; Курош А. Г., Курс высшей алгебры, 11 изд., М., 1975.
Численное Интегрирование
Численное Решение Уравнений
Численность