Подвижность ионов и электронов

Определение «Подвижность ионов и электронов» по БСЭ:
Подвижность ионов и электронов - 1) в газе и низкотемпературной плазме - отношение средней скорости u направленного (в результате действия электрического поля) движения электронов или ионов к напряжённости электрического поля Е: μ = u/E.
Зависимость u от Е в принципе даётся решением кинетического уравнения Больцмана. Однако не только решение, но даже точное написание этого уравнения связано со значительными трудностями, обусловленными разнообразием элементарных процессов, в которых участвуют ионы и электроны. Поэтому обычно П. и. и э. теоретически рассчитывают приближённо, вводя упрощающие допущения. Подвижность ионов
и) и электронов (μэл) исследуют раздельно, т.к. элементарные процессы, определяющие движение тех и других, различны. Для электронов существенно, что вследствие малости их массы они при упругих столкновениях теряют лишь незначительную часть энергии. Поэтому даже в слабых полях появление у них направленного движения (накладывающегося на тепловое - хаотическое) приводит к тому, что их средняя энергия намного превышает энергию тяжёлых нейтральных атомов и молекул. Теоретически П. и. и э. впервые проанализировал в 1903 П. Ланжевен. Впоследствии были развиты более строгие и сложные теории, описывающие зависимость u от Е. Первым измерил μэл английский физик Дж.
Таунсенд, изучая диффузию пучка электронов, движущихся в электрическом поле, и смещение этого пучка в магнитном поле. Наиболее точные данные о зависимости u от Е приведены на рис. 1. Приближённые значения μэл получают при измерении концентрации и подвижности электронов (а также Е) в положительном столбе электрического разряда в газе.
Подвижность ионов, движущихся в постороннем газе, удовлетворительно описывается теорией Ланжевена, согласно которой в одном и том же газе она зависит только от массы иона (рис. 2). Основной процесс, определяющий μ ионов в их собственном газе, - Перезарядка ионов. Пройдя длину свободного пробега перезарядки, ион обменивается зарядом с нейтральной частицей, а вновь возникший ион
«стартует» с начальной скоростью, близкой к тепловой (т. н. «эстафетный» механизм движения ионов). В сильных полях при этом u ≈ (Е/р)1/2, где p - давление газа, приведённое к 0°C. Развитие этой теории позволило учесть и собственное тепловое движение нейтральных атомов (молекул). В предельно слабых полях теория предсказывает, а эксперимент подтверждает линейную зависимость u ионов от Е.
П. и. и э. связана с коэффициентом диффузии D формулой Эйнштейна: D/μ = kT/e, где T - абсолютная температура заряженных частиц в предположении, что они подчиняются Максвелла распределению (в смеси разных заряженных и нейтральных частиц их средние энергии и, следовательно, температуры могут быть различны - свойство «неизотермичности» такой смеси);
k - Больцмана постоянная; е - заряд электрона.
2) Подвижность ионов в растворах U = Fu, где F - Фарадея число, u - скорость иона в см/сек при напряжённости электрического поля в 1 в/см. Величина U зависит от природы иона, а также от температуры, диэлектрической проницаемости, вязкости и концентрации раствора.
Л. А. Сена.
Рис. 1. Зависимость скорости и направленного (по электрическому полю Е) движения электронов в различных газах от отношения E/p, где р - приведённое к 0°C давление газа.

Рис. 2. Зависимость подвижности ионов μ от их массы Mi.

Подвижной состав    Подвижность ионов и электронов    Подвижность носителей тока