Формальная арифметика

Определение «Формальная арифметика» по БСЭ:
Формальная арифметика - формулировка арифметики в виде формальной (аксиоматической) системы (см. Аксиоматический метод). Язык Ф. а. содержит константу 0, числовые переменные, символ равенства, функциональные символы +, ·, (прибавление 1) и логические связки (см. Логические операции). Постулатами Ф. а. являются аксиомы и правила вывода исчисления предикатов (классического или интуиционистского в зависимости от того, какая Ф. а. рассматривается), определяющие равенства для арифметических операций:
а + 0 = а, а + b’ = (а + b),
а ·0 = 0, а ·b’ = (а·b) + а,
аксиомы Пеано:
⌉(а’ = 0), a’= b’ → а = b,
(a = b & а = с) → b = с, а = b →a = b
и схема аксиом индукции:
A (0) & ∀x (А (х) → А (x)) → ∀xa (x).
Средства Ф. а. достаточны для вывода теорем элементарной теории чисел. В настоящее время, по-видимому, неизвестно ни одной содержательной теоретико-числовой теоремы, доказанной без привлечения средств анализа, которая не была бы выводима в Ф. а. В Ф. а. изобразимы Рекурсивные функции и доказуемы их определяющие равенства. Это позволяет, в частности, формулировать суждения о конечных множествах. Более того, Ф. а. эквивалентна аксиоматической теории множеств Цермело - Френкеля без аксиомы бесконечности: в каждой из этих систем может быть построена модель другой.
Ф. а. удовлетворяет условиям обеих теорем Гёделя о неполноте. В частности, имеются такие полиномы P, Q от 9 переменных, что формула ∀x1... ∀x9 (P ≠ Q) невыводима, хотя и выражает истинное суждение, а именно непротиворечивость Ф. а.
Поэтому неразрешимость диофантова уравнения Р - Q = 0 недоказуема в Ф. а. Непротиворечивость Ф. а. доказана с помощью трасфинитной индукции до ординала
ε0 (наименьшее решение уравнения ωε = ε). Поэтому схема индукции до ε0 недоказуема в Ф. а., хотя там доказуема схема индукции до любого ординала α < ε0. Класс доказуемо рекурсивных функций Ф. а. (т. е. частично рекурсивных функций, общерекурсивность которых может быть установлена средствами Ф. а.) совпадает с классом ординально рекурсивных функций с ординалами <
ε0.
Не все теоретико-числовые предикаты выразимы в Ф. а.: примером является такой предикат T, что для любой замкнутой арифметической формулы A имеет место T (⌈A⌉) ↔ A, где ⌈A⌉ - номер формулы А в некоторой фиксированной нумерации, удовлетворяющей естественным условиям. Присоединение к Ф. а. символа T с аксиомами типа
T (⌈A & B⌉) ↔ T (⌈A⌉) & T (⌈B⌉),
выражающими его перестановочность с логическими связками, позволяет доказать непротиворечивость Ф. а. Похожая конструкция (но уже внутри Ф. а.) доказывает, что схему индукции нельзя заменить никаким конечным множеством аксиом. Ф. а. корректна и полна относительно формул вида
∃x1... ∃xk (P = Q); замкнутая формула из этого класса доказуема тогда и только тогда, когда она истинна. Так как этот класс содержит алгоритмически неразрешимый предикат, отсюда следует, что проблема выводимости в Ф. а. алгоритмически неразрешима.
При задании Ф. а. в виде генценовской системы осуществима нормализация выводов, причём нормальный вывод числового равенства состоит только из числовых равенств. На этом пути было получено первое доказательство непротиворечивости Ф. а. Нормальный вывод формулы с кванторами может содержать сколь угодно сложные формулы. Полная подформульность достигается после замены схемы индукции на со-правило, позволяющее вывести В
→ ∀xA (x) из В → A (0), B → A (1),... Понятие ω-вывода (т. е. вывода с ω-правилом) высоты < ε0 выразимо в Ф. а., поэтому переход к ω-выводам позволяет устанавливать в Ф. а. многие метаматематические теоремы, в частности полноту относительно формул вида
∃x1... ∃xk (P = Q) и ординальную характеристику доказуемо рекурсивных функций.
Лит.: Клини С. К., Введение в метаматематику, пер. с англ., М., 1957; Hilbert D., Bernays P., Grundlagen der Mathematik, 2 Aufl., Bd 1-2, В., 1968-70.
Г. Е. Минц.

Формализованный язык    Формальная арифметика    Формальная грамматика