Многозначная Логика

Многозначная Логика в Энциклопедическом словаре:
Многозначная Логика - общее наименование логических систем, в которых,помимо двух значений истинности (''истина'' и ''ложь''), рассматриваются и др.значения (напр., ''бессмысленно'', ''неопределенно'' и т. п.). Широкоприменяются в логической семантике и кибернетике.

Значение слова Многозначная Логика по Логическому словарю:
Многозначная Логика -  - совокупность логических систем, опирающихся на принцип многозначности. В классической двузначной логике выражения при интерпретации принимают только два значе­ния — «истинно» и «ложно», в М. л. рассматриваются и другие зна­чения, напр. «неопределенно», «возможно», «бессмысленно» и т. п. В зависимости от множества истинностных значений различают конечнозначные и бесконечнозначные логики. М. л.явля­ется одним из интенсивно развивающихся разделов логики неклас­сической. Проблема содержательно ясной интерпретации многозначных систем — наиболее сложная и спорная в М. л. Об этом выразительно говорит, в частности, обилие интерпретаций, предложенных для самой старой из этих систем — трехзначной логики Я. Лукасевича. В соответствии с одной из ее интерпретаций, высказывания должны делиться не просто на истинные и ложные, а на истин­ные, ложные и парадоксальные. Значение «парадоксально» припи­сывается высказываниям типа «Данное утверждение является лож­ным», т. е. тем высказываниям, из допущения истинности которых вытекает их ложность, а их допущения ложности — истинность. Промежуточное значение истолковывалось и как «бессмыслен­но». К бессмысленным относятся высказывания типа «Наполеон — наибольшее натуральное число» и т. п. Это значение истолковы­валось и как «неизвестно» или «неопределенно». Неопределенное высказывание — это высказывание, относительно которого в силу к.-л. (возможно, меняющихся от случая к случаю) оснований нельзя сказать, что оно истинно или ложно. К неопределенным могут от­носиться, в частности, высказывания, истинностное значение ко­торых является разным в разные моменты времени («Идет дождь»), высказывания с различного рода переменными и т. д. Эти примеры показывают, что одна и та же многозначная си­стема может иметь разные интерпретации, причем «неестествен­ность» некоторых из них вовсе не означает, что столь же «неесте­ственной» будет и каждая иная интерпретация. М. л. не отрицает двузначную логику. Напротив, первая позволя­ет более ясно понять основные идеи, лежащие в основе второй, и является в определенном смысле ее обобщением. В большинстве М. л.   отсутствуют отдельные законы двузначной логики. В принципе мож­но построить М. л., в которой не имеет места любой наперед за­данный закон двузначной логики. С другой стороны, М. л. таковы, что их законами являются утверждения, не имеющие аналогов в классической логике. Эти факты не препятствуют, однако, рассмотрению М. л. как своеобразного обобщения двузначной логики. Некоторые утвержде­ния, являющиеся логическими законами при допущении двух зна­чений истинности, перестают быть законами при введении некото­рых дополнительных значений. Но в этом случае законами М. л. не оказываются и отрицания соответствующих двузначных законов. Напр., в интуиционистской логике не имеют места не только зако­ны исключенного третьего и приведения к абсурду, но и отрицания этих законов. Ни двузначность, ни многозначность не являются прирожден­ными свойствами человеческого мышления. Решение одних проблем может быть получено в рамках двузначной логики, рассуждение о других может оказаться более успешным, если опирается на тот или иной вариант М. л. Вопрос же о том, какой является формальная логика как особая наука, с точки зрения числа допускаемых значе­ний истинности не имеет смысла. Логика никогда не исчерпывалась и тем более не исчерпывается сейчас одной-единственной логичес­кой системой. Вопрос о числе допускаемых значений истинности может возникнуть только при построении отдельных логических систем и при решении отдельных логических проблем. Логика же как совокупность всего огромного числа существующих конкрет­ных логических систем не является, очевидно, ни двузначной, ни многозначной. М. л. существует около полувека. Многие ее проблемы пока не решены или недостаточно исследованы. Тем не менее уже к настоя­щему времени М. л. нашла большое число приложений, интерес­ных в теоретическом или практическом отношении. Прежде всего открытие М. л. заставило по-новому взглянуть на саму науку логи­ку, ее предмет и используемые ею методы. Оно с особой вырази­тельностью подчеркнуло тот факт, что классическая двузначная логика не является единственно мыслимой и возможной и что современная логика слагается из множества внутренне разнород­ных логических систем. Многозначные системы более богаты, чем двузначная логика: в первых имеются функции, невыразимые во второй. Так, если в двузначной логике имеются только четыре разные функции от од­ного аргумента, то в трехзначной логике их уже соответственно двадцать семь. Это послужило основой попыток определить в рам­ках М. л. такие понятия, которые, будучи взяты сами по себе, не кажутся достаточно ясными и которые неопределимы в двузнач­ной логике. Речь идет прежде всего о модальных понятиях «необ­ходимо», «возможно», «случайно» и т. п. Многозначные системы использовались при построении логики квантовой механики, описывающей логическую структуру языка этой физической теории. В информационно-поисковых системах, являющихся системами записи, хранения и обработки данных, используется обычно есте­ственный язык. Выявление логической структуры инормационного поиска и построение общей теории его имитации логическими сред­ствами требует языка формализованного. Было высказано предпо­ложение, что для информационного поиска, в процессе которого нередко встречается ситуация неопределенности, целесообразно ис­пользовать М. л.

Определение «Многозначная Логика» по БСЭ:
Многозначная логика - раздел математической логики, изучающий математические модели логики высказываний. Эти модели отражают две основные черты последней - множественность значений истинности высказываний и возможность построения новых, более сложных высказываний из заданных при помощи логических операций, которые позволяют также по значениям истинности исходных высказываний устанавливать значение истинности сложного высказывания. Примерами многозначных высказываний являются суждения с модальным исходом
(«да», «нет», «может быть») и суждения вероятностного характера, а примерами логических операций - логической связки типа «и», «или», «если..., то». В общем случае модели М. л. представляют собой обобщения алгебры логики. Важно отметить, что в алгебре логики высказывания принимают только два значения истинности
(«да», «нет»), в связи с чем она в общем случае не может отразить всего многообразия логических построений, встречающихся на практике. При достаточно широком толковании М. л. в неё иногда включают также логические исчисления.
Исторически первыми моделями М. л. явились двузначная логика Дж. Буля (называемая также алгеброй логики), трёхзначная логика Я. Лукасевича (1920) и m-значная логика Э. Поста (1921). Изучение этих моделей составило важный этап в создании теории М. л. М. л. обладает определённой спецификой, состоящей в рассмотрении задач и подходов, возникающих при исследовании М. л. с позиций математической логики, теоретической кибернетики и алгебры. Так, с позиций теоретической кибернетики, модели М. л. рассматриваются как языки, описывающие функционирование сложных управляющих систем, компоненты которых могут находиться в некотором числе различных состояний; а с точки зрения алгебры, модели М. л. представляют собой алгебраические системы, имеющие наряду с прикладным и чисто теоретический интерес.
Построение моделей М. л. осуществляется по аналогии с построением двузначной логики. Так, индивид, высказывания логики, разбитые на классы с одним и тем же значением истинности, приводят к понятию множества Е - констант модели, которые фактически отождествляют все индивидуальные высказывания, заменяя их соответствующими значениями истинности; переменные высказывания - к переменным величинам x1, x2, ..., которые в качестве значений принимают элементы из множества Е; логической связки - к множеству М элементарных функций (операций), которые, как и их аргументы, принимают значения из Е. Сложные высказывания, построенные из индивидуальных и переменных высказываний, а также логических связок, приводят к множеству <М> формул над М. Значение истинности из Е сложного высказывания является функцией от соответствующих значений истинности высказываний, входящих в данное сложное высказывание.
В модели эта функция приписывается формуле, соответствующей данному сложному высказыванию; говорят также, что формула реализуют эту функцию. Множество формул <М> приводит к множеству [М] функций, реализуемых формулами из <М> и называемых суперпозициями над М. Множество [М] называется замыканием множества М. Задание конкретной модели М. л. считается эквивалентным указанию множеств Е, М, <М> и [М]; при этом говорят, что модель порождается множеством М. Эта модель называется формульной моделью, а также m-значной логикой, где m обозначает мощность множества Е.
Своеобразие подхода математической кибернетики к М. л. состоит в рассмотрении моделей М. л. как управляющих систем. Элементарные функции при этом являются элементами, производящими определённые операции, а формулы интерпретируются как схемы, построенные из элементов и также осуществляющие переработку входной информации в выходную. Такого рода управляющие системы, известные в кибернетике как схемы из функциональных элементов, широко используются в теоретических и практических вопросах кибернетики. Вместе с тем существует ряд задач логики и кибернетики, который связан с изучением соответствий между множествами М и [М] и при котором роль множества <М> несколько затушёвывается, сводясь к способу определения второго множества по первому. В этом случае приходят к другой модели М. л., которая представляет собой алгебру, элементами которой являются функции, принимающие в качестве значений, как и их аргументы, элементы из Е. В качестве операций в этих алгебрах обычно используется специальный набор операций, эквивалентный в смысле соответствий М и [М] множеству формул, построенных из функций множества М, т. е. получению сложных функций из заданных путём подстановки одних функций вместо аргументов других.
К числу задач, характерных для формульной модели М. л., относится задача «об описании», т. е. вопрос об указании для заданного множества М2 ⊆ [M1] всех формул из 1>, реализующих функции из М2. Частным случаем такой задачи является важный вопрос математической логики об указании всех формул, реализующих заданную константу, что, например, для исчисления высказываний эквивалентно построению всех тождественно истинных высказываний.
Пограничным вопросом между математической логикой и алгеброй, примыкающим к задаче об описании, является задача о тождественных преобразованиях. В ней при заданном множестве М требуется выделить в некотором смысле простейшее подмножество пар равных (т. е. реализующих одну и ту же функцию) формул из <М>, позволяющее путём подстановки выделенных равных формул одной вместо другой получить из любой формулы все формулы, равные ей. Аналогичное место занимает один из важнейших вопросов для М. л. - т. н. проблема полноты, состоящая в указании всех таких подмножеств M1 заданного замкнутого, т. е. совпадающего со своим замыканием, множества М, для которых выполнено равенство [M1] = М, т. е. имеет место свойство полноты M1 в М. Глобальной задачей для М. л. является описание структуры замкнутых классов данной модели М. л.
Характерный для теории управляющих систем вопрос о сложности этих систем естественно возникает и по отношению к формулам и функциям из М. л. Типичной при таком подходе является следующая задача о сложности реализации. На множестве всех элементарных формул некоторым способом вводится числовая мера (сложность формул), которая затем распространяется на множество всех формул, например, путём суммирования мер всех тех элементарных формул, которые участвуют в построении заданной формулы. Требуется для заданной функции указать ту формулу (простейшую), которая реализует эту функцию и имеет наименьшую сложность, а также выяснить, как эта сложность зависит от некоторых свойств рассматриваемой функции. Исследуются различные обобщения этой задачи. Широкий круг вопросов связан с реализацией функций формулами с наперёд заданными свойствами. Сюда относятся задача о реализации функций алгебры логики дизъюнктивными нормальными формами и связанная с этим задача о минимизации; а также задача о реализации функций формулами в некотором смысле ограниченной глубины (т. е. такими формулами, в которых цепочка подставляемых друг в друга формул имеет ограниченную длину, такое ограничение связано с надёжностью и скоростью вычислений).
Решения всех перечисленных задач существенно зависят от мощности множества Е и множества М, порождающего заданную модель М. л.
К числу наиболее важных примеров М. л. относятся конечнозначные логики (т. е. m-значные логики, для которых m конечно). Среди них наиболее глубоко исследован случай m = 1. Важнейшим результатом здесь является полное описание структуры замкнутых классов и получение для них важной информации по задаче о сложности реализации. Установлено, что при m > 2 у конечнозначных логик возникает ряд особенностей, существенно отличающих их от двузначного случая. Таковы, например, континуальность множества замкнутых классов (при m = 2 их счётное число), особенности решения задачи о сложности реализации и ряд других. Общим результатом для конечнозначных логик является эффективное решение задачи о полноте для замкнутых классов, содержащих все функции со значениями в Е. Решение остальных проблем для конечнозначных логик продвинуто в различной степени. Особая значимость конечнозначных логик связана ещё и с тем, что они позволяют описывать работу самых различных реальных вычислительных устройств и автоматов.
Примерами другой М. л. являются счётнозначные и континуум-значные логики (т. е. такие m-значные логики, для которых мощность m является, соответственно, счётной или континуальной). Эти модели играют важную роль в математической логике, моделей теории и в математическом анализе. К М. л. иногда относят и такие алгебры функций, в которых запас операций несколько отличается от указанного. Как правило, это достигается путём сужения описанного запаса или введения в операции некоторых функций рассматриваемой М. л.
Лит.: Яблонский С. В., Гаврилов Г. П., Кудрявцев В. Б., Функции алгебры логики и классы Поста, М., 1966; Яблонский С. В., Функциональные построения в k-значной логике, «Тр. Матем. института АН СССР», 1958, т. 51, с. 5-142.
В. Б. Кудрявцев.

Многозначительный    Многозначная Логика    Многозначная Функция