Непротиворечивость

Непротиворечивость в Энциклопедическом словаре:
Непротиворечивость - совместимость, отсутствие противоречия - логическийкритерий корректности (правильности) некоторого утверждения, рассужденияили их совокупности (теории). Непротиворечивость исчисления означаетлогическую возможность его интерпретации и является необходимым условиемего практической реализуемости.

Значение слова Непротиворечивость по Логическому словарю:
Непротиворечивость -  - свойство предложений некоторой теории (в случае аксиоматической теории — системы ее аксиом), заключающееся в невыводимости из них противоречия. Если отри­цание какого-то предложения может быть доказано в теории, то о самом предложении говорится, что оно опровержимо в ней. Не­противоречивость теории означает, что никакое предложение не может быть в ней и доказано, и вместе с тем опровергнуто. Требование Н. является обязательным требованием к научной и, в частности, логической теории. Противоречивая теория завело- мо несовершенна: наряду с истинными положениями она вклю­чает также ложные, в ней что-то одновременно и доказывается, и опровергается. Во многих теориях имеет место закон Дунса Скота. В этих усло­виях доказуемость противоречия означает, что становится «дока­зуемым» все что угодно и понятие доказательства теряет смысл. Применительно к таким теориям требование Н. равносильно ус­ловию, что в теории имеется хотя бы одно недоказуемое выска­зывание. Н. одной теории может быть доказана через другую тео­рию, Н. которой гарантирована. Однако такое доказательство об­ладает лишь относительной убедительностью. Для простых теорий, таких, как исчисление высказываний, доказательство Н. не пред­ставляет труда. В более сложных теориях оно обычно сводится к интерпретации в терминах теории множеств. Для сложных тео­рий, напр. арифметики и самой теории множеств, отыскание под­ходящей теории, которая сама была бы непротиворечивой и вме­сте с тем могла бы использоваться для доказательства их Н., пред­ставляется задачей скорее всего безнадежной. Это указывает на нетривиальность проблемы Н., ее трудность и глубину. В реальных, достаточно сложных научных теориях, в том числе в теориях самой логики, могут встречаться противоречия. В связи с этим в последние десятилетия большое внимание привлекают логические системы, в которых из противоречия невыводимо про­извольное высказывание. Обнаружение противоречия в опира­ющейся на такую систему теории не означает, что в ней становит­ся доказуемым все что угодно (см.: Паранепротиворечивая логика).

Определение слова «Непротиворечивость» по БСЭ:
Непротиворечивость - совместимость, свойство дедуктивной теории (или системы аксиом, посредством которых теория задаётся), состоящее в том, что из неё нельзя вывести противоречие, т. е. какие-либо два предложения А и ¬ A, каждое из которых является отрицанием другого. Для широкого класса формальных теорий, включающих аксиому A &
¬ A ⊃ В («из противоречия следует любое утверждение»), Н. равносильна существованию в данной теории хотя бы одного недоказуемого предложения.
Н., необходимая для того чтобы система могла рассматриваться как описание некоторой «содержательной ситуации», отнюдь не гарантирует существования такой ситуации. Впрочем, для любой непротиворечивой системы аксиом в каждом случае могут быть указаны абстрактные модели; поэтому для представителей
«классических» направлений в основаниях математики и логики (и тем более для представителей моделей теории) Н. служит если и не обоснованием «существования» описываемых аксиомами совокупностей абстрактных объектов, то, по крайней мере, достаточным основанием для содержательного рассмотрения и изучения таких объектов. Поскольку описываемая теорией
«ситуация» лежит вне самой теории, данное выше понятие Н., которое можно назвать «внутренней» (иначе -синтаксической, или логической) Н., тесно связано с так называемой «внешней» (семантической) Н., заключающейся в недоказуемости в данной теории никакого предложения, противоречащего (в обычном содержательном смысле) фактам описываемой ею «действительности».
Несмотря на эту связь, синтаксическая и семантическая Н. равносильны лишь для таких «бедных» логических теорий, как, например, исчисление высказываний (см. Логика высказываний); вообще же говоря, внутренняя Н. сильнее внешней. Роль отображаемой какой-либо конкретной теорией
«действительности» может играть и некоторая другая дедуктивная теория, так что внешнюю Н. исходной теории можно понимать как её относительную Н., а указание системы соответствующих семантических правил перевода понятий, выражений и утверждений из второй теории в первую, дающее интерпретацию (модель) исходной теории, оказывается для неё доказательством относительной Н.
В классической математике источником построения моделей для таких доказательств служит в конечном счёте Множеств теория. Однако обнаружение в теории множеств Парадоксов (антиномий) обусловило потребность поиска новых, принципиально отличных от метода интерпретаций, методов доказательства Н., - в некотором смысле «абсолютных».
(Такая потребность возникает и в силу несовпадения понятий внутренней и внешней Н.) Можно избрать и промежуточный путь, требуя абсолютное доказательство Н. только для аксиоматической теории множеств (к которой уже можно было бы сводить проблемы Н. конкретных математических теорий чисто теоретико-модельными средствами) или даже хотя бы для такого относительно простого её фрагмента, как формализованная арифметика натуральных чисел, так как средствами последней строится теоретико-множественный
«универсум» (предметная область) основных разделов классической математики. Такой путь и избрал Д. Гильберт, предложивший широкую программу, в ходе выполнения которой обосновываемые теории, прежде всего, подвергались бы формализации, а полученные формальные системы (исчисления) (См. Формальная система) исследовались бы на предмет их синтаксической Н. так называемыми финитными (т. е. содержательными, но не использующими сомнительных теоретико-множественных абстракций) средствами. Такие абсолютные доказательства Н. составили основное содержание развиваемой школой Гильберта метаматематики (теории доказательства). Но уже в 1931 К. Гёдель доказал принципиальную невыполнимость гильбертовой программы, а тем самым и ограниченность аксиоматического метода, в рамках которого для достаточно богатых формальных теорий требования Н. и полноты оказываются несовместимыми (подробнее см. Аксиоматический метод). Что же касается содержательных дедуктивных теорий (в том числе и математических), по отношению к которым требование полноты теряет смысл, то для них Н. по-прежнему остаётся важнейшим необходимым критерием осмысленности и практической приложимости.
Лит.: Клини С. К., Введение в метаматематику, пер. с англ., М., 1957 (имеется лит.). См. также лит. при статьях Аксиоматический метод, Метаматематика.
Ю. А. Гастев.

Непротивленчество    Непротиворечивость    Непротиворечия Закон