Радий

Значение слова Радий по Ефремовой:
Радий - Радиоактивный химический элемент, серебристо-белый металл.

Значение слова Радий по Ожегову:
Радий - Химический элемент - металл, обладающий радиоактивными свойствами

Радий в Энциклопедическом словаре:
Радий - (лат. Radium) - Ra, химический элемент II группы периодическойсистемы, атомный номер 88, атомная масса 226,0254, относится кщелочно-земельным металлам. Радиоактивен; наиболее устойчивый изотоп 226Ra(период полураспада 1600 лет). Название от лат. radius - луч.Серебристо-белый блестящий металл; плотность 5,5-6,0 г/см3, tпл 969 .С.Химически очень активен. В природе встречается в урановых рудах.Исторически первый элемент, радиоактивные свойства которого нашлипрактическое применение в медицине и технике. Изотоп 226Ra в смеси сбериллием идет на приготовление простейших лабораторных источниковнейтронов.

Значение слова Радий по словарю Ушакова:
РАДИЙ
радия, мн. нет, м. (от латин. radius - луч) (хим., физ.). Химический элемент, металл, обладающий способностью излучать тепловую и лучистую энергию, распадаясь при этом в последовательный ряд простых веществ. Лечение радием.

Значение слова Радий по словарю Брокгауза и Ефрона:
Радийхимический элемент, принадлежащий ко второй группе периодической системы и открытый г-жой Кюри при исследовании урановой смоляной руды (см. Эманация). По своим химическим свойствам радий является аналогом бария, соответственно своему атомному весу (225) занимая в периодической системе место под ним в 12-м ряду. Для выделения радия из смоляной руды сернокислые соли стронция, бария и радия переводятся кипячением с содой в углекислые, а затем растворяются, всего лучше в бромистоводородной кислоте. При фракционированной кристаллизации бромистых солей радий скопляется в первых фракциях, так как он труднее растворяется, чем бромистый барий. Этим путем Гизелю впервые удалось получить свободный от бария бромистый радий, при помощи 9 последовательных кристаллизаций. Чистая соль фосфоресцирует голубоватым светом и при внесении в пламя бунзеновской горелки вызывает карминово-красное окрашивание. Спектр радия содержит две интенсивные полосы в красно-желтой части, яркую линию в голубой и две нерезких в фиолетовой (длина воли главнейших линий 4825, 896; 3649,712; 3814,661; 4682,149). Радиоактивность радия приблизительно в 1000000 больше, чем урана, и потому почти все работы, относящиеся к изучению свойств и действий лучей, производились и производятся именно с радиевыми препаратами. К сожалению, урановая смоляная руда до сих пор является почти единственным источником радия, хотя и в ней он составляет менее 1/1000000 по весу. Поэтому цена на радий все повышается, и ныне 1 мгр. стоит около 400 франков. Ни на одном элементе не изучен так хорошо радиоактивный процесс — ход распада атома, как на радии (см. Радиоактивность). Тела, подобного UrX или ThX, радий не образует, так что первым продуктом здесь является инертный газ с темп. сжижения около — 150° — эманация (см. это слово). В свою очередь, эманация образует твердый продукт — вторичную радиоактивность, оседающую на стенках сосуда с эманацией или на отрицательно заряженной металлической пластинке или проволоке, подвергающейся действию эманации. Подобно ториевой, эта вторичная активность представляет собой растворимое в кислотах и улетучивающееся при накаливании твердое тело, частицы которого заряжены положительным электричеством и, подобно ториевой, она оказалась смесью нескольких продуктов последовательного разложения атома. Тщательное изучение кривых потери силы металлических пластинок, активированных эманацией радия, показало, что мы имеем здесь дело с тремя продуктами: эманация образует RaA, который, разлагаясь (со скоростью половины в 3 минуты), образует RaB; последний продукт переходит в RaC, причем превращение половины количества RaB требует 26,7 минут. RaC разлагается дальше, выделяя α -, β - и γ - лучи, причем половина его превращается в 19 минут. Продукты дальнейшего превращения радия исследованы Резерфордом, который определил еще три ступени (RaD, RaE и RaF); эти тела характеризуются медленностью разложения и, вследствие того, значительно большей продолжительностью существования. Если активированную радием пластинку оставить на 24 часа, то RaA, RaB и RaC разлагаются совершенно, но активность не исчезает окончательно, и пройдя через минимум, начинает снова возрастать. При этом β-лучи растут быстро, в 40 дней достигая некоторой максимальной величины (половина ее достигается в 6 дней), а затем остаются постоянными. Этот процесс, совершенно напоминая образование UrX из урана, указывает, что и после исчезновения RaC на пластинке остается еще новый продукт (RaD), который и дает, в свою очередь, тело (RaE), испускающее β-лучи. Интенсивность α-лучей, как и β, сначала равна почти нулю, — вероятно, RaD не испускает лучей. Но затем сила α-лучей все растет, и, судя по кривой роста, может достигнуть максимума только через 2,8 года. Эти α-лучи зависят от RaF, который образуется из RaE и, в свою очередь, распадается далее; что при этом последнем распаде, кроме α-луча, получается, пока не выяснено. Период полураспада RaF в 143 дня; его радиоактивная константа определяется тем легче, что этот продукт удобно изолировать: при погружении в солянокислый раствор смеси RaD, RaE и RaF палочки висмута только RaF осаждается на этом металле в виде тончайшего слоя, а RaD и RaE остаются в растворе. Три продукта эти различаются и по своей летучести: так, при 1000° RaF улетучивается легко, RaD — труднее, а RaE не летит вовсе. Как радиоактивная константа, так и химические свойства заставили признать тождество RaF с открытым г-жой Кюри и признанным ею за самостоятельный элемент продуктом, которому она дала имя полония. Впрочем, полоний, по-видимому, содержит еще и RaD, ибо нацело активность его не теряется и через 3 года; более чистый RaF изолировал из той же смоляной руды Марквальд, назвав его радиотеллуром. Гофманн и Цербан описали еще один радиоактивный элемент, близкий к свинцу, вследствие чего они назвали его радиосвинцом; судя по его радиоактивным свойствам, это не что иное, как RaD. В общем, ход распада радия, по нынешним данным, может быть представлен следующей таблицей: Что касается времени распада самого радия, то суждение о нем основывается на следующих данных. Как известно, α-лучи заряжены положительным электричеством. Резерфорд измерил количество этого электричества, отдаваемое α-лучами определенного количества радиоактивного вещества в определенный промежуток времени, и мог отсюда вычислить, принимая заряд каждого α-луча равным обыкновенному заряду иона, что 1 гр. радия испускает в 1 секунду 6,2 ×1010 α-лучей. По теории дезинтеграции атомов, испускание одного α-луча означает распад одного атома, а так как 1 куб. см. водорода содержит 3,6 ×1019 молекул, и атомный вес радия 225, то 1 гр. радия содержит около 3,6 ×1021 атомов, из которых 6,2 ×1010 в секунду разлагается; отсюда и вычислено, что половина данного количества радия разложится в 1280 лет. Где конец процесса, каков тот нерадиоактивный атом, который является стойким продуктом распада радия — пока неизвестно. Когда было доказано, что эманация радия образует гелий, то думали, что гелий и есть окончательный продукт. Оказывается, однако, что и эманация актиния дает гелий, и теперь склоняются к мысли, что гелий — это α-лучи, лишенные заряда. Есть основания предполагать, что таким конечным продуктом является свинец, всегда сопровождающий в минералах радий; но это пока совершенно не доказано. С другой стороны, атом радия настолько нестоек, что этот металл давно должен был бы разложиться, и нахождение его в древней урановой руде делает вероятным, что радий постоянно образуется заново. Естественно предположить, что исходным материалом для радия должен быть уран — этот постоянный спутник радия в минералах, и, наоборот, — всегда содержащий небольшие количества радия. Исследование показало, что отношение количеств урана и радия для всех минералов сохраняется то же, — обстоятельство, подкрепляющее гипотезу происхождения радия из урана. Наконец, были поставлены прямые опыты, которые, действительно, показали, что 1 кг очищенной от радия урановой соли через несколько месяцев начинает выделять небольшие количества эманации радия. Таким образом, приведенную таблицу можно бы дополнить так: U →UrX→... Ra и т. д. Литературу см. в ст. Радиоактивность. Ю. Залькинд.

Определение слова «Радий» по БСЭ:
Радий (лат. Radium)
Ra, радиоактивный химический элемент II группы периодической системы Менделеева, атомный номер 88. Известны изотопы Р. с массовыми числами 213, 215, 219-230. Самым долгоживущим является α-радиоактивный 226Ra с периодом полураспада около 1600 лет. В природе как члены естественных радиоактивных рядов встречаются 222Ra (специальное название изотопа - актиний-икс, символ AcX), 224Ra (торий-икс, ThX), 226Ra и 228Ra (мезоторий-I, MsThI).
Об открытии Р. сообщили в 1898 супруги П. и М. Кюри совместно с Ж. Бемоном вскоре после того, как А. Беккерель впервые (в 1896) на солях урана обнаружил явление радиоактивности. В 1897 работавшая в Париже М. Склодовская-Кюри установила, что интенсивность излучения, испускаемого урановой смолкой (минерал Уранинит), значительно выше, чем можно было ожидать, учитывая содержание в смолке урана. Склодовская-Кюри предположила, что это вызвано присутствием в минерале ещё неизвестных сильно радиоактивных веществ. Тщательное химическое исследование урановой смолки позволило открыть два новых элемента - сначала Полоний, а чуть позже - и Р. В ходе выделения Р. за поведением нового элемента следили по его излучению, поэтому и назвали элемент от лат. radius - луч. Чтобы выделить чистое соединение Р., супруги Кюри в лабораторных условиях переработали около 1 т заводских отходов, оставшихся после извлечения урана из урановой смолки. Было выполнено, в частности, не менее 10 000 перекристаллизаций из водных растворов смеси BaCl2 и RaCl2 (соединения Бария служат т. н. изоморфными носителями при извлечении Р.). В итоге удалось получить 90 мг чистого RaCI2.
В СССР работы по выделению Р. из отечественного сырья были начаты вскоре после Октябрьской революции 1917 по прямому указанию В. И. Ленина. Первые препараты Р. были получены в СССР в 1921 В. Г. Хлопиным и И. Я. Башиловым. Образцы солей Р. демонстрировались в мае 1922 участникам 3-го Менделеевского съезда.
Р. - чрезвычайно редкий элемент. В урановых рудах, являющихся главным его источником, на 1 т U приходится не более 0,34 г Ra. Р. принадлежит к сильно рассеянным элементам и в очень малых концентрациях обнаружен в самых различных объектах.
Все соединения Р. на воздухе обладают бледно-голубоватым свечением. За счёт самопоглощения α- и β-частиц, испускаемых при радиоактивном распаде 226Ra и его дочерних продуктов, каждый грамм 226Ra выделяет около 550 дж (130 кал) теплоты в час, поэтому температура препаратов Р. всегда немного выше окружающей.
Р. - серебристо-белый блестящий металл, быстро тускнеющий на воздухе. Решётка кубическая объёмноцентрированная, расчётная плотность 5,5 г/смі. По разным источникам, tпл. составляет 700-960°C, tкип около 1140°C. На внешней электронной оболочке атома Р. находятся 2 электрона (конфигурация 7sІ). В соответствии с этим Р. имеет только одну степень окисления +2 (валентность II). По химическим свойствам Р. больше всего похож на барий, но более активен. При комнатной температуре Р. соединяется с кислородом, давая окисел RaO, и с азотом, давая нитрид Ra3N2. С водой Р. бурно реагирует, выделяя H2, причём образуется сильное основание Ra (OH)2. Хорошо растворимы в воде хлорид, бромид, иодид, нитрат и сульфид Р., плохо растворимы карбонат, сульфат, хромат, оксалат.
Изучение свойств Р. сыграло огромную роль в развитии научного познания, т.к. позволило выяснить многие вопросы, связанные с явлением радиоактивности. Долгое время Р. был единственным элементом, радиоактивные свойства которого находили практическое применение (в медицине; для приготовления светящихся составов и т.д.). Однако сейчас в большинстве случаев выгоднее использовать не Р., а более дешёвые искусственные радиоактивные изотопы др. элементов. Р. сохранил некоторое значение в медицине как источник Радона при лечении радоновыми ваннами. В небольших количествах Р. расходуется на приготовление нейтронных источников (в смеси с бериллием) и при производстве светосоставов (в смеси с сульфидом цинка).
Лит.: Вдовенко В. М., Дубасов Ю. В., Аналитическая химия радия, Л., 1973; Погодин С. А., Либман Э. П., Как добыли советский радий, М., 1971.
С. С. Бердоносов.
Радий в организме. Из естественных радиоактивных изотопов наибольшее биологическое значение имеет долгоживущий 226Ra. Р. неравномерно распределён в различных участках биосферы. Существуют Геохимические провинции с повышенным содержанием Р. Накопление Р. в органах и тканях растений подчиняется общим закономерностям поглощения минеральных веществ и зависит от вида растения и условий его произрастания. Как правило, в корнях и листьях травянистых растений Р. больше, чем в стеблях и органах размножения; больше всего Р. в коре и древесине. Среднее содержание Р. в цветковых растениях 0,3-9,0·10−11 кюри/кг, в мор. водорослях 0,2-3,2·10−11 кюри/кг.
В организм животных и человека поступает с пищей, в которой он постоянно присутствует (в пшенице 20-26·10−15г/г, в картофеле 67-125·10−15г/г, в мясе 8·10−15 г/г), а также с питьевой водой. Суточное поступление в организм человека 226Ra с пищей и водой составляет 2,3·10−12 кюри, а потери с мочой и калом 0,8·10−13 и 2,2·10−12 кюри.
Около 80% поступившего в организм Р. (он близок по химическим свойствам Ca) накапливается в костной ткани. Содержание Р. в организме человека зависит от района проживания и характера питания. Большие концентрации Р. в организме вредно действуют на животных и человека, вызывая болезненные изменения в виде Остеопороза, самопроизвольных переломов, опухолей. Содержание Р. в почве свыше 1·10−7-10−8 кюри/кг заметно угнетает рост и развитие растений.
Лит.: Вернадский В. И., О концентрации радия растительными организмами, «Докл. АН СССР. Сер. А», 1930, № 20; Радиоэкологические исследования в природных биогеоценозах, М., 1972.
В. А. Кальченко, В. А. Шевченко.

Радиевый Институт    Радий    Радикал