Селен

Значение слова Селен по Ефремовой:
Селен - Химический элемент - серо-черный металлоид, применяемый при изготовлении фотоэлементов, а также в стекольной промышленности.

Селен в Энциклопедическом словаре:
Селен - (лат. Selenium) - Se, химический элемент VI группы периодическойсистемы Менделеева, атомный номер 34, атомная масса 78,96. Название отгреческого selene - Луна. Образует несколько модификаций. Наиболееустойчив серый селен - кристаллы, плотность 4,807 г/см3, tпл 221 .С. Вприроде рассеян, сопутствует сере, добывают из отходов (шламов) приэлектролитической очистке меди. Полупроводник, обладающийфотоэлектрическими свойствами. Селеновые фотоэлементы применяют вразличных устройствах, напр. фотоэлектрических экспонометрах. Всесоединения селена ядовиты.

Значение слова Селен по словарю медицинских терминов:
селен (Selenium; Se) - химический элемент VI группы периодической системы Д. И. Менделеева; ат. номер 34, ат. масса 78,96; С. и все его соединения токсичны для человека.

Значение слова Селен по словарю Ушакова:
СЕЛЕН
селена, и селений, селеня, мн. нет, м. (от греч. selene - луна) (хим.). Химический элемент, представляющий собой серо-черный металлоид, редко встречающийся в природе в чистом виде и добываемый гл. .обр. при выработке серной кислоты.

Значение слова Селен по словарю Даля:
Селен
селений м. простое химическое начало, коего свойства ближе к сере, нежели к металлам. Селеновая кислота. Селенистая медь, содержащая селен. Селенит, гипсовый шпат, ископаемое.

Значение слова Селен по словарю Брокгауза и Ефрона:
Селен (хим.) — Selen нем., Selemum франц. и англ.; при О = 16, Se = 79,1 — по Экману и Петтерсоону, что согласно с одним из старых определений Берцелиуса — элемент с характером неметалла; он принадлежит к группе кислорода и, по химическим отношениям, занимает промежуточное место между серой и теллуром, как в группе галоидов бром помещается между хлором и йодом. В природе С. встречается, хотя и не очень редко, всегда в малых количествах. Он найден в сере вулканического происхождения на Вулкано (один из Липарских островов) и на Гаваи (самый большой из Сандвичевых о-вов). Обыкновенно же встречается в виде селенистых металлов вместе с сернистыми, например: селенистые: свинец PbSe, ртуть HgSe и HgSe + 4HgS, а также [Hg,Pb]Se; серебро Ag2Se, медь Сu 2 Sе, а также 2PbSe + 9Cu 4 Se; минералы эти и подобные были найдены на Гарце близ Тилькероде, Зорге и Клаусталя, также в Тюрингии, Швеции, в Мексике, Аргентине. Природный запас таких соединений во всяком случае ничтожен, так что главным источником С. должно считать некоторые железные или медные колчеданы и цинковые обманки, где С. играет роль серы; в них содержание его ничтожно, но при процессе обжигания, с целью получения сернистого ангидрида для синтеза камерной серной кислоты, или для того, чтоб получить окисленные металлы, весь С. сосредотачивается в определенном месте аппарата и, следовательно, может быть взят и очищен. Газообразный селенистый еодород SeH2 обладает, как и сернистый водород SH 2, слабыми кислотными свойствами, но менее прочен и из элементов образуется только при нагревании в пределах температур в 250 — 520°. При тех же температурах он и разлагается: если нагреть С. в запаянной трубке с водородом, то в более холодном конце ее получается возгон свободного С. в виде блестящих кристаллов; при употреблении не способного реагировать с С. газа, возгон получается аморфный. Олово при нагревании отнимает С. от H 2 Se, а сера — водород. Лучший способ получения — двойное разложение с разведенной соляной кислотой селенистого калия K 2 Se или железа: FeSe + 2HCl = FeCl2 + H2Se; селенистое железо готовят путем нагревания С. с железом. Некоторые органические вещества, напр. канифоль, при нагревании с С. точно так же дают H 2 Sе. Это бесцветный газ с противным запахом, напоминающим сероводород; после некоторого обращения с этим веществом появляется краснота глаз и начинается воспаление слизистых оболочек носа и дыхательных путей с временной утратой чувства обоняния. Растворимость в воде выше, чем для сернистого водорода; растворы обладают тем же ядовитым запахом, как и Н 2 Sе, и кислой реакцией. Бесцветный вначале раствор постепенно мутится на воздухе, вследствие окисления; получается аморфный С., в виде красного порошка. При взаимодействии с растворами солей тяжелых металлов получаются осадки селенистых металлов, как с H 2 S — cеpниcтыx. Единственный окисел, селенистый ангидрид SeO2, получают, сжигая при нагревании в струе сухого кислорода С., помещенный в тугоплавкой трубке, согнутой под острым углом. Горение совершается с не особенно ярким пламенем в основании белым, а по краям в вершине синевато-зеленого цвета. Продукт горения осаждается в более холодной части прибора в виде длинных, четырехгранных блестяще-белых иголок, которые под обыкновенным давлением и при температуре около 300° возгоняются, не плавясь; пары обладают зеленовато-желтым цветом (походят на хлор) и едким, кислым запахом. По мнению Берцелиуса, который в 1817 г. открыл С. и затем доставил большую часть сведений об этом элементе, при сжигании его в воздухе образуется еще другой, менее богатый кислородом, окисел С.; особенный, пронзительный запах, распространяющийся при этом и наполняющий комнату даже при сжигании только 0,001 г, по Берцелису, принадлежит именно этому окислу. Такой же запах, напоминающий о гнилой редьке, возникает и при сжигании ранее открытого теллура (от tellus, земля), вследствие чего Берцелиус принял было найденный им С. за теллур, а затем, убедившись в его самостоятельности, назвал новый элемент С. (от σελήνη, Луна). В настоящее время известно, что запах этот, если и развивается при накаливании в пламени паяльной трубки теллура, помещенного на куске древесного угля, то благодаря присутствию в нем примеси С.; что касается состава этого пахучего вещества, то он пока остается неизвестным. Селенистый ангидрид растворим в воде при незначительном поглощении тепла — ок. 0,9 больш. калор. на грам. частичный вес. Испаряя такой раствор в эксикаторе над крепкой серной кислотой, получают большие, с продольными штрихами водяно-прозрачные кристаллы, сходные с кристаллами селитры. Это — селенистая кислота Н 2 SеО 3; удельный вес 3,0066 при 15,7°. В сухом воздухе она теряет постепенно свою воду, а во влажном притягивает новые количества. Если растворить SeO 2 в 0,2 вес. ч. горячей воды и охладить, то получаются такие же кристаллы. Для С. существует, следовательно, кислота, отвечающая по составу совершенно непрочной, известной только в виде солей сернистой кислоте H 2SO3. Эта кислота, будучи двухосновной, образует и средние соли, например, калиевую K 2SeO3, и кислые KHSeO 3 a также и более кислые KHSeO 3. Н 2 SеО 3. Средние соли щелочных металлов в воде растворимы, а соли щелочно-земельных и тяжелых металлов не растворимы; кислые же соли все растворимы. Средние соли калия, натрия и аммония имеют щелочную реакцию, а кислые — кислую. Все соли очень ядовиты. Аммонийная соль или смеси других солей с нашатырем дают при нагревании свободный С. — (NН 4)2 SеО 3 = 3Н 2 O + Н 2 + N2 + Sе. Вообще SeO 2, способный образовать гидрат, не особенно прочно удерживает в себе кислород; так, напр., сернистый ангидрид осаждает из водного раствора селенистой кислоты свободный С. в виде объемистых хлопьев: H2SeO3 + 2SO2 + H2O = 2H2SO4 + Se что отвечает значительному выделению тепла (теплота образования из элементов для граммовой частицы SeO 2, по Томсену, 57,7 б. к.); превращению весьма способствует присутствие хлористого водорода (Г. Розе); оно идет скоро только при нагревании или на солнечном свету. Осаждение С. из растворов Н 2 SеО 3 в присутствии соляной кислоты совершается также при действии различных металлов — железа, цинка, меди и даже серебра; серебряная проволока в таком растворе желтеет или буреет, покрываясь селенистым серебром, если в растворе находится даже только 1/20000 — 1/50000 С. Различные органические вещества выделяют С. из раствора Н 2 SеО 3 и даже пыль органического происхождения, попадающая из воздуха. Таким образом, селенистая кислота весьма легко раскисляется до свободного С., почему иногда при камерном процессе, в иле на дне свинцовых камер, присутствует этот элемент в свободном виде, где он и был открыт Берцелиусом, в Грипсгольме (Швеция). Сернистый газ для получения серной кислоты готовили здесь тогда сжиганием серы из Фалуна (Швеция), которая добывалась путем сухой перегонки железного колчедана (см. Сера), содержавшего некоторое количество С. Вместе с SO 2 в камеры попадал SeO 2 и там восстанавливался до С., который и падал на дно. Селеновая кислота Н 2 SеО 4 получается окислением С. или H 2SeO3 при действии хлора (Митчерлих, 1827 г.) или брома: Sе + 4Н 2O + 3Cl2 = H2 SеO 4 + 6НСl или H2SeO3 + H2O + Cl2 = H2SeO4 + 2HCl. В виде солей селеновая кислота получается, если действовать хлором на соли H 2SeO3, а также при сплавлении С. или, лучше, SeO 2 с селитрой (Берцедиус). Чистую Н 2 SеО 4 в водном растворе удобно получать (Томсен) при действии брома на селенисто-кислое серебро, разболтанное в воде. Ag2SeO3 + H2O + Br2 = 2ArBr + H2StO4 Такой раствор, слитый с осадка бромистого серебра, может быть сгущен выпариванием сначала на воздухе, причем улетает излишне взятый бром, пока температура не достигла 285°; при этой температуре H 2SeO4 начинает терять кислород, превращаясь в Se O2. Получить чистую кислоту Н 2 SеО 4 удается только в пустоте при 180°; она по охлаждении кристаллизуется в виде длинных призм, плавящихся при 58° и похожих на кристаллы Н 24; удельный вес 2,6273. Она жадно притягявает воду и обугливает многие органические соединения, подобно серной кислоте. Растворяется с выделением тепла, образуя растворы, совершенно напоминающие крепкую серную кислоту; моногидрат Н 2 SеO 42 O плавится при 25°. Железо, цинк растворяются при выделении водорода в разбавленной Н 2 SеО 4; при нагревании же она растворяет медь и даже золото, превращаясь в H 2SeO3. Раскисление такое совершается и при кипячении с соляной кислотой: H2SeO4 + 2HCl = H2SeO3 + H2O + Cl2. К подобному превращению серная кислота не способна. Соли H 2SeO4 представляют полную аналогию с солями H 2SO4 во многом. Селено-кислый барий BaSeO4, будучи не растворим в воде и кислотах, применяется для количественных определений H 2SeO4; но и он не выдерживает кипячения с соляной кислотой, превращаясь в растворимый BaSeO 3 при выделении хлора. Попытки получить ангидрид этой кислоты SeO 3, напр., путем взаимодействия SeO 2 с кислородом в присутствии губчатой платины или отнятия воды от H 2SeO4, не увенчались успехом. С. прямо соединяется с галоидами, образуя соединения состава Se 2G2 и SeG 4. Это жидкости: Se 2Cl2 желто-бурого цвета; Se 2Br2 темно-красного цвета; или кристаллические вещества: Se 2J2 — черная с металлическим блеском масса; SeCl 4 белого цвета, способен возгоняться и кристаллизуется из раствора в хлорокиси фосфора в виде блестящих кубиков; SeBr4 — оранжево-желтый кристаллический порошок. С водой все они реагируют [В водном растворе бромистого водорода SeBr 4 способен растворяться без разложения; из такого раствора, прибавляя к нему КВr или NH 4 Br, W. Muthmanu получил (1893) соли K 2SeBr6 и (NH4)2SeBr6, кристаллизующиеся в темных октаэдрах. Это как бы соли селенистой кислоты, в которых кислород замещен зквивалентным количеством брома. Существуют аналогичные соединения и для теллура.] подобно соответствующим соединениям серы, то есть как хлорангидриды, причем соединения низшего типа дают свободный С.: 2Se2G2 + 3H2 O = 3Se + Н 2 SеО 3 + 4HG или SeG4 + 3Н 2 O = Н 2 SеО 3 + 4HG. Йодистый С. SeJ4, темная кристаллическая масса с температурой плавления 75° — 80°, с большим количеством воды реагирует согласно последнему уравнению, но весьма медленно, и, напротив того, возникает при смешении крепких растворов селенистой кислоты и йодистого водорода: Н 2 SеО 3 + 4HJ = SeJ4 + 3Н 2O. Свободный С. выделяют из вышеупомянутого камерного ила или из осадка в трубах, по которым проходили газообразные и летучие продукты обжигания колчеданов, следующим образом: исходный материал смешивают с равными частями крепкой серной кислоты и воды; полученное жидкое тесто нагревают до кипения, затем прибавляют бертолетовой соли до исчезновения красной окраски осадка, причем С. переходит в раствор в виде Н 2 SеО 4, разбавляют водой и фильтруют; прибавив к фильтрату дымящей соляной кислоты, кипятят его, пока не прекратится выделение хлора, что указывает на полное превращение H 2SeO4 в H 2SeO3; охладив и профильтровав, насыщают прозрачный раствор сернистым газом, вследствие чего осаждается не вполне чистый С. в форме красного аморфного порошка. Такой С. обыкновенно содержит некоторое количество свинца и других металлов; очистить от них его можно или перегонкой, или путем сплавления с содой и селитрой; в последнем случае получается Na 2SeO4, из раствора которого, по прибавлении соляной кислоты, осаждают сернистой кислотой чистый С. Подобно сере, С. известен в нескольких аллотропических формах; из них одни растворимы в сероуглероде, другие же не растворимы (Берцелиус, Гитторф). К первой группе принадлежит упомянутый аморфный красный порошок, а также и кристаллический черный порошок С., который получается при действии сернистого газа на горячий раствор H2SeO3 [Существует С. и коллоидальный (Шульце), растворимый в воде; это темно-красный порошок, вполне растворимый в воде; раствор (он представляет красную флюоресцирующую жидкость) можно кипятить без разложения; но кислоты или соли свертывают его, что само собой происходит после некоторого стояния. При высыхании раствора С. остается в виде красной прозрачной пленки. Коллоидальный С. получают действтием SO 2 на раствор H 2SeO3.]. Из сероуглеродного раствора С. кристаллизуется в виде темно-красных, просвечивающих кристаллов, изоморфных с призматической серой, с удельн. в. 4,5. В виде гексагональних кристаллов, изоморфных с теллуром, С. кристаллизуется из расплавленного состояния при температурах, несколько высших, чем 130°; охлажденный же застывает в буро-черную, просвечивающую и ломкую аморфную массу с удельн. весом 4,3. Все эти формы растворимого в сероуглероде С. не имеют определенной температуры плавления: размягчаются при нагревании постепенно. Нерастворимый или так называемый металлический С. получается из расплавленного и охлажденного до 210°С; если эта температура поддерживается некоторое время, то наконец происходит быстрое затвердевание в зернистую кристаллическую массу, причем выделяется тепло, и температура поднимается до 217°; уд. вес такого С. 4,5. Если оставить на воздухе крепкий раствор K 2 Se, то постепенно, вследствие окисления, осаждается черный, состоящий из микроскопических кристаллов порошок точно так же не растворимого в сероуглероде С., с уд. весом 4,8. Последние две модификации растворимы в Se 2Cl2, из которого кристаллизуются обе в виде металлического С. Температура плавления металлического С. постоянная, именно 217°; но быстро охлажденный он превращается в аморфный, растворимый С. Как и для серы, температура кипения С. одна и та же для всех модификаций, именно 680° (Карнелли); шары обладают темно-красным цветом и сгущаются в приемнике сначала в виде ярко красного селенового цвета, а затем получаются черные блестящие капли. Плотность пара падает с температурой: при 860° она равна 110,7 и при 1420° 81,5 (относительно водорода); последнее указывает на состав2 для частицы С. при температурах, близких к 1500°. Металлический С., как и настоящие металлы, проводит электричество; эта способность падает с повышением температуры; но на нее оказывает также действие и свет, что особенно замечательно и характерно для С. Действие света особенно резко, когда С. незадолго до опыта был выдержан при 210° значительное время. Если определить для такого С. сопротивление току в темноте, а затем осветить дневным рассеянным светом, то сопротивление тотчас уменьшается; по прекращении освещения оно возрастает медленно до прежней величины. Из такого замечательного свойства С. сделано употребление для фотометрических измерений [По мнению Бидвелля (1897), ток проводится здесь не металлически, а элекролитически; принимает в этом участие селенистая медь, образующаяся от соприкосновения С. с электродами под влиянием света. Если покрыть красным селеном медную пластвину в темноте, то никакого взаимодействия не происходит; выставив ее под негативом на свет, получают отпечаток, после очистки пластинка оказывается вытравленной. Бидвелль полагает, что на этом явлении можно бы основать новый фотомеханический процесс.]. С. способен растворяться в расплавленном стекле, сообщая ему красный цвет, чем уже пользуются ва стеклянных заводах Германии (1893); для этой цели прибавляют соль селенистой или селеновой кислоты и, когда она растворится в расплавленном стекле, вводят мышьяковистый ангидрид, сернисто-кислый натрий или другой какой-нибудь восстановитель. Также и для обесцвечивания стекла прибавляют С. (Gr. Richter, 1895), для уничтожении зеленой окраски, вследствие присутствия закиси железа; сначала прибавляют обычные обесцвечивающие средства, пиролюзит или селитру, а затем С., которого достаточно от 1 до 5 г на 100 кг песка, входящего в состав стекла. С. С. Колотов. Δ .

Определение слова «Селен» по БСЭ:
Селен (Selenium)
Se, химический элемент VI группы периодической системы Менделеева; атомный номер 34, атомная масса 78, 96; преимущественно неметалл. Природный С. представляет собой смесь шести устойчивых изотопов (%) - 74Se (0,87), 76Se (9,02), 77Se (7,58), 78Se (23,52), 80Se (49,82), 82Se (9,19). Из 16 радиоактивных изотопов наибольшее значение имеет 75Se с периодом полураспада 121 сут. Элемент открыт в 1817 И. Берцелиусом (название дано от греч. selene - Луна).
Распространение в природе. С. - очень редкий и рассеянный элемент, его содержание в земной коре (кларк) 5·10−6% по массе. История С. в земной коре тесно связана с историей серы. С. обладает способностью к концентрации и, несмотря на низкий кларк, образует 38 самостоятельных минералов - селенидов природных, селенитов, селенатов и др. Характерны изоморфные примеси С. в сульфидах и самородной сере.
В биосфере С. энергично мигрирует. Источником для накопления С. в живых организмах служат изверженные горные породы, вулканические дымы, вулканические термальные воды. Поэтому в районах современного и древнего вулканизма почвы и осадочные породы нередко обогащены С. (в среднем в глинах и сланцах - 6·10−5%).
Физические и химические свойства. Конфигурация внешней электронной оболочки атома Se 4sІ4p4; у двух р-электронов спины спарены, а у остальных двух - не спарены, поэтому атомы С. способны образовывать молекулы Se2 или цепочки атомов Sen. Цепи атомов С. могут замыкаться в кольцевые молекулы Se8. Разнообразие молекулярного строения обусловливает существование С. в различных аллотропических модификациях: аморфной (порошкообразный, коллоидный, стекловидный) и кристаллический (моноклинный α-и β-формы и гексагональный γ-формы).
Аморфный (красный) порошкообразный и коллоидный С. (плотность 4,25 г/смі при 25°C) получают при восстановлении из раствора селенистой кислоты H2SeO3, быстрым охлаждением паров С. и др. способами. Стекловидный (чёрный) С. (плотность 4,28 г/смі при 25°C) получают при нагревании любой модификации С. выше 220°C с последующим быстрым охлаждением. Стекловидный С. обладает стеклянным блеском, хрупок. Термодинамически наиболее устойчив гексагональный (серый) С. Он получается из других форм С. нагреванием до плавления с медленным охлаждением до 180-210°C и выдержкой при этой температуре. Решётка его построена из расположенных параллельно спиральных цепочек атомов. Атомы внутри цепей связаны ковалентно. Постоянные решётки а = 4,36
Е, с = 4,95 Е, атомный радиус 1,6 Е, ионные радиусы Se2-1,98 Е и Se4+0,69 Е, плотность 4,807 г/смі при 20°C, tпл 217°C, tкип 685°C. Пары С. желтоватого цвета. В парах в равновесии находятся четыре полимерные формы Se8
⇔ Se6 ⇔ Se4 ⇔ Se2. Выше 900°C доминирует Se2. Удельная теплоёмкость гексагонального С. 0,19-0,32 кдж/(кг·К), [0,0463-0,0767 кал/(г·°C)] при -198 - +25°C и 0,34 кдж/(кг·К) [0,81 кал/(г·°C)] при 217°C; коэффициент теплопроводности 2,344 вт/(м·К) [0,0056 кал/(см·сек·°C)], температурный коэффициент линейного расширения при 20°C: гексагонального монокристаллического С. вдоль c-оси 17,88·10−6, перпендикулярно c-оси 74,09·10−6, поликристаллического 49,27·10−6; изотермическая сжимаемость β0=11,3· 10−3 кбар−1, коэффициент электрического сопротивления в темноте при 20°C 10І-1012 ом см.
Все модификации С. обладают фотоэлектрическими свойствами. Гексагональный С. вплоть до температуры плавления - примесный полупроводник с дырочной проводимостью. С. - диамагнетик (пары его парамагнитны). На воздухе С. устойчив; кислород, вода, соляная и разбавленная серная кислоты на него не действуют, хорошо растворим в концентрированной азотной кислоте и царской водке, в щелочах растворяется с окислением. С. в соединениях имеет степени окисления -2, +2, +4, +6. Энергия ионизации Se0
→Se1+→Se2+→S3+ соответственно 0,75; 21,5; 32 эв.
С кислородом С. образует ряд окислов: SeO, Se2O5, SeO2, SeO3. Два последних являются ангидридами селенистой H2SeO3 и селеновой H2SeO4 к-т (соли - селениты и селенаты). Наиболее устойчив SeO2. С галогенами С. даёт соединения SeF6, SeF4, SeCl4, SeBr4, Se2Cl2 и др. Сера и теллур образуют непрерывный ряд твёрдых растворов с С. С азотом С. даёт Se4N4, с углеродом - CSe2. Известны соединения с фосфором P2Se3, P4Se3, P2Se5. Водород взаимодействует с С. при t ≥ 200°C, образуя H2Se; раствор H2Se в воде называется селеноводородной кислотой.
При взаимодействии с металлами С. образует Селениды. Получены многочисленные комплексные соединения С. Все соединения С. ядовиты.
Получение и применение. С. получают из отходов сернокислотного, целлюлозно-бумажного производства и анодных шламов электролитического рафинирования меди. В шламах С. присутствует вместе с серой, теллуром, тяжёлыми и благородными металлами. Для извлечения С. шламы фильтруют и подвергают либо окислительному обжигу (около 700°C), либо нагреванию с концентрированной серной кислотой. Образующийся летучий SeO2 улавливают в скрубберах и электрофильтрах. Из растворов технический С. осаждают сернистым газом. Применяют также спекание шлама с содой с последующим выщелачиванием селената натрия водой и выделением из раствора С. Для получения С. высокой чистоты, используемого в качестве полупроводникового материала, черновой С. рафинируют методами перегонки в вакууме, перекристаллизации и др.
Благодаря дешевизне и надёжности С. используется в преобразовательной технике в выпрямительных полупроводниковых диодах, а также для фотоэлектрических приборов (гексагональный), электрофотографических копировальных устройств (аморфный С.), синтеза различных селенидов, в качестве люминофоров в телевидении, оптических и сигнальных приборах, терморезисторах и т. п. С. широко применяется для обесцвечивания зелёного стекла и получения рубиновых стекол; в металлургии - для придания литой стали мелкозернистой структуры, улучшения механических свойств нержавеющих сталей; в химической промышленности - в качестве катализатора; используется С. также в фармацевтической промышленности и других отраслях.
Г. Б. Абдуллаев.
С. в организме. Большинство живых существ содержит в тканях от 0,01 до 1 мг/кг С. Концентрируют его некоторые микроорганизмы, грибы, морские организмы и растения. Известны бобовые (например, астрагал, нептуния, акация), крестоцветные, мареновые, сложноцветные, накапливающие С. до 1000 мг/кг (на сухую массу); для некоторых растений С. - необходимый элемент. В растениях-концентраторах обнаружены различные селеноорганические соединения, главным образом селеновые аналоги серусодержащих аминокислот - селенцистатионин, селенгомоцистеин, метилселенметионин. Важную роль в биогенной миграции С. играют микроорганизмы, восстанавливающие селениты до металлического С. и окисляющие селениды. Существуют Биогеохимические провинции С.
Потребность человека и животных в С. не превышает 50-100 мкг/кг рациона. Он обладает антиоксидантными свойствами, повышает восприятие света сетчаткой глаза, влияет на многие ферментативные реакции. При содержании С. в рационе более 2 мг/кг у животных возникают острые и хронические формы отравлений. Высокие концентрации С. ингибируют окислительно-восстановительные ферменты, нарушают синтез метионина и рост опорно-покровных тканей, вызывают анемию. С недостатком С. в кормах связывают появление т. н. беломышечной болезни животных, некротической дегенерации печени, экссудативного диатеза; для предупреждения этих заболеваний используют селенит натрия.
В. В. Ермаков.
Лит.: Синдеева Н. Д., Минералогия, типы месторождений и основные черты геохимии селена и теллура, М., 1959; Кудрявцев А. А., Химия и технология селена и теллура, 2 изд., М., 1968; Чижиков Д. М., Счастливый В. ГГ., Селен и селениды, М., 1964; Абдуллаjeв
Ћ. Б., Селендэ вэ селен дузлэндиоичилэ риндз физики просеслэрин тэдгиги, Бакы, 1959; Селен и зрение, Баку, 1972; Абдуллаев Г. Б., Абдинов Д. Ш., Физика селена, Баку, 1975; Букетов Е. А., Малышев В. П., Извлечение селена и теллура из медеэлектролитных шламов, А.-А., 1969; Recent advances in selenium physics, Oxf. - [a. o.], [1965]; The physics of selenium and tellurium, Oxf. - [a. o.], [1969]; Ермаков В. В., Ковальский В. В., Биологическое значение селена, М., 1974; Rosenfeld I., Beath O. A., Selenium, N. Y. - L., 1964.

Селемин    Селен    Селена