Электричество

Значение слова Электричество по Ефремовой:
Электричество - 1. Совокупность явлений, обусловленных существованием, взаимодействием и движением электрических зарядов (в физике). // перен. Сильное возбуждение, возбужденное состояние.
2. Раздел физики, изучающий явления, обусловленные существованием, взаимодействием и движением электрических зарядов.
3. Электрическая энергия, используемая для народнохозяйственных и бытовых целей.
4. Освещение, получаемое благодаря электрической энергии.

Значение слова Электричество по Ожегову:
Электричество - Освещение, получаемое на основе этой энергии


Электричество Совокупность явлений, в которых обнаруживается существование, движение, взаимодействие заряженных частиц
Электричество Энергия, получаемая в результате использования таких явлений

Электричество в Энциклопедическом словаре:
Электричество - (от греч. elektron - янтарь) - совокупность явлений, вкоторых обнаруживается существование, движение и взаимодействие(посредством электромагнитного поля) заряженных частиц. Учение обэлектричестве - один из основных разделов физики. Часто под электричествомпонимают электрическую энергию, напр., когда говорят об использованииэлектричества в народном хозяйстве; значение термина ''электричество''менялось в процессе развития физики и техники. О применении электричествав технике см. Электротехника.


совокупность явлений, обусловленных существованием,движением и взаимодействием заряженных тел или частиц - носителейэлектрических зарядов. Связь электричества и магнетизма Взаимодействиенеподвижных электрических зарядов осуществляется посредствомэлектростатического поля. Движущиеся заряды (электрический ток) наряду сэлектрическим полем возбуждают и магнитное поле, то есть порождаютэлектромагнитное поле, посредством которого осуществляютсяэлектромагнитные взаимодействия. Таким образом, электричество неразрывносвязано с магнетизмом. Электромагнитные явления описываются классическойэлектродинамикой, в основе которой лежат уравнения Максвелла.Происхождениетерминов ''электричество'' и ''магнетизм''Простейшие электрические и магнитныеявления известны с глубокой древности. Близ города Магнесия в Малой Азиибыли найдены удивительные камни (по месту нахождения их назвалимагнитными, или магнитами), которые притягивали железо. Кроме того,древние греки обнаружили, что кусочек янтаря (греч. elektron, электрон),потертый о шерсть, мог поднять маленькие клочки папируса. Именно словам''магнит'' и ''электрон'' обязаны своим происхождением термины ''магнетизм'',''электричество'' и производные от них.Электромагнитные силы вприродеКлассическая теория электричества охватывает огромную совокупностьэлектромагнитных процессов. Среди четырех типов взаимодействий -электромагнитных, гравитационных, сильных (ядерных) и слабых, существующихв природе, электромагнитные взаимодействия занимают первое место по широтеи разнообразию проявлений. В повседневной жизни, за исключением притяженияк Земле и приливов в океане, человек встречается в основном только спроявлениями электромагнитных сил. В частности, упругая сила пара имеетэлектромагнитную природу. Поэтому смена ''века пара'' ''веком электричества''означала лишь смену эпохи, когда не умели управлять электромагнитнымисилами, на эпоху, когда научились распоряжаться этими силами по своемуусмотрению.Трудно даже перечислить все проявления электрических (точнее,электромагнитных) сил. Они определяют устойчивость атомов, объединяютатомы в молекулы, обусловливают взаимодействие между атомами и молекулами,приводящее к образованию конденсированных (жидких и твердых) тел. Все видысил упругости и трения также имеют электромагнитную природу. Велика рольэлектрических сил в ядре атома. В ядерном реакторе и при взрыве атомнойбомбы именно эти силы разгоняют осколки ядер и приводят к выделениюогромной энергии. Наконец, взаимодействие между телами осуществляетсяпосредством электромагнитных волн - света, радиоволн, теплового излученияи др.Основные особенности электромагнитных силЭлектромагнитные силы неуниверсальны. Они действуют лишь между электрически заряженными частицами.Тем не менее они определяют структуру материи и физические процессы вшироком пространственном интервале масштабов - от 10-13 до 107 см (наменьших расстояниях определяющими становятся ядерные взаимодействия, а набольших - нужно учитывать и гравитационные силы). Главная причина в том,что вещество построено из электрически заряженных частиц - отрицательных -электронов и положительных атомных ядер. Именно существование зарядов двухзнаков - положительных и отрицательных - обеспечивает действие как силпритяжения между разноименными зарядами, так и сил отталкивания междуодноименными, и эти силы очень велики по сравнению с гравитационными.Сувеличением расстояния между заряженными частицами электромагнитные силымедленно (обратно пропорционально квадрату расстояния) убывают, подобногравитационным силам. Но заряженные частицы образуют нейтральные системы -атомы и молекулы, силы взаимодействия между которыми проявляются лишь наочень малых расстояниях. Существенен также сложный характерэлектромагнитных взаимодействий: они зависят не только от расстояний междузаряженными частицами, но и от их скоростей и даже ускорений.Применениеэлектричества в техникеШирокое практическое использование электрическихявлений началось лишь во второй половине 19 в., после создания Дж. К.Максвеллом классической электродинамики. Изобретение радио А. С. Поповым иГ. Маркони - одно из важнейших применений принципов новой теории. Впервыев истории человечества научные исследования предшествовали техническимприменениям. Если паровая машина была построена задолго до создания теориитеплоты (термодинамики), то сконструировать электродвигатель илиосуществить радиосвязь оказалось возможным только после открытия иизучения законов электродинамики.Широкое применение электричества связанос тем, что электрическую энергию легко передавать по проводам на большиерасстояния и, главное, преобразовывать с помощью сравнительно несложныхустройств в другие виды энергии: механическую, тепловую, энергию излученияи т. д. Законы электродинамики лежат в основе всей электротехники ирадиотехники, включая телевидение, видеозапись и почти все средства связи.Теория электричества составляет фундамент таких актуальных направленийсовременной науки, как физика плазмы и проблема управляемых термоядерныхреакций, лазерная оптика, магнитная гидродинамика, астрофизика,конструирование вычислительных машин, ускорителей элементарных частиц идр.Бесчисленные практические применения электромагнитных явленийпреобразовали жизнь людей на земном шаре. Человечество создало вокруг себя''электрическую среду'' - с повсеместной электрической лампочкой иштепсельной розеткой почти на каждой стене.Границы применимостиклассической электродинамикиС прогрессом науки значение классическогоучения об электричестве не уменьшилось. Были определены лишь границыприменения классической электродинамики. Эти границы устанавливаютсяквантовой теорией. Классическая электродинамика успешно описываетповедение электромагнитного поля при достаточно медленных колебаниях этогополя. Чем больше частота колебаний, тем отчетливее обнаруживаютсяквантовые (корпускулярные) свойства электромагнитногополя.Литература:Максвелл Дж. К. Избранные сочинения по теорииэлектромагнитного поля: Пер. с англ. М., 1952.Кудрявцев П. С. Историяфизики. М., 1956.Льоцци М. История физики: Пер. с итал. М., 1970.Тамм И.Е. Основы теории электричества. 10 изд. М., 1989.Г. Я. МякишевЭЛЕКТРО... (от электричество) - часть сложных слов, указывающая наотношение к электричеству.

Значение слова Электричество по словарю Ушакова:
ЭЛЕКТРИЧЕСТВО
электричества, мн. нет, ср. (греч. elektron). 1. Субстанция, лежащая в основе строения материи (физ.). || Своеобразные явления, сопровождающие движение и перемещение частиц этой субстанции, форма энергии (электрический ток и т. п.), используемая в технике (физ.). Учение об электричестве (отдел физики). Мотор приводится в действие электричеством. 2. Эта энергия как предмет бытового потребления (разг.). Провести электричество в квартиру. Квартира с газом и электричеством. Заплатить за электричество. Счет за электричество. || Освещение, свет от этой энергии (разг.). Потушить электричество. Зажечь электричество.

Значение слова Электричество по словарю Брокгауза и Ефрона:
Электричество — Э. называется то, содержащееся в теле, что сообщает этому телу особые свойства, вызывает в нем способность действовать механически на некоторые другие тела, притягивать или при известных условиях отталкивать их, а также вызывает в самом этом теле способность испытывать подобные же механические действия других тел. Кроме этого, Э., содержащееся в теле, представляет собою при определенных условиях причину особого светового явления, возникающего около тела или в виде искры, как бы выскакивающей из поверхности этого тела, или в виде светящейся кисти, или, наконец, туманного свечения, окружающего это тело. Все такие явления, т. е. вышеупомянутые притяжения или отталкивания между телами, а также и особые свечения, наблюдаемые около тел, носят общее название "электрические явления". Самое слово "электрические, -ая, -ое" введено в науку Гильбертом (Gilbert). Оно явилось в замечательном труде Гильберта, напечатанном в Лондоне в 1600 г. под названием "De magnete magneticisque corporibus et de magno magnete tellure Physiologia nova". В этой своей книге Гильберт впервые показал, что необходимо различать два рода явлений: магнитные и те, которые наблюдаются при употреблении янтаря, потертого шерстью. Гильберт указал дальше, что способность янтаря, после того как он был подвергнут натиранию чем-либо шерстяным, притягивать к себе легкие тела возбуждается и во многих других телах (напр. в алмазе, горном хрустале, в смоле, в стекле и т. д.) при подобных же условиях, т. е. после натирания этих тел шерстью или мехом. Эту-то притягательную силу, проявляемую натертым янтарем или натертым другим телом, Гильберт и назвал "электрическою силою" (... electricam nobis placet appellare...) от греческого названия янтаря — ηλεκτρον. Гильберт впервые заметил, что влажность воздуха в значительной степени мешает приведению янтаря, а также и других тел в электрическое состояние. Следующий шаг в развитии знаний об электрических явлениях был сделан только 71 год спустя после опубликования труда Гильберта, а именно в 1671 г., и он был сделан известным изобретателем воздушного насоса Отто фон Герике. Отто фон Герике открыл взаимное отталкивание двух наэлектризованных тел, передачу электрического состояния от одного тела другому при посредстве соединяющего эти два тела третьего тела, впервые подметил возбуждение электризации в теле при приближении его к другому наэлектризованному и впервые заметил электрическое свечение. Он первый устроил и электрическую машину, при посредстве которой можно было получать сравнительно сильную электризацию. Машина фон Герике представляла собою смоляной шар на железной оси, приводимой во вращение. Когда вращалась ось, a вместе с нею и смоляной шар, то этот шар электризовался при наложении на него руки. После фон Герике опять в течение почти 60-ти лет не было сделано никакого нового крупного открытия в области электрических явлений. Можно отметить лишь указание Бойля, что если наэлектризованное тело притягивает какое-нибудь другое тело, не наэлектризованное, то и обратно, оно само притягивается последним, да опыт Ньютона, доказавший что промежуточный слой стекла не препятствует действию между наэлектризованным телами. В 1729 г. Стефан Грей обнаружил важный факт — неодинаковое отношение различных тел к передаче при их посредстве электрического состояния от одного тела к другому. Вскоре после этого, благодаря особенно опытам Дю-Фэ (Du-Fay), и было установлено разделение тел на два класса: проводники и непроводники Э. Самые термины эти были введены в науку Дезагюлье. В 1733 г. Дю-Фэ открыл существование двух родов электрического состояния. Он показал, что натертое шерстью стекло отталкивает другое, также натертое шерстью стекло и притягивает кусок смолы, натертый мехом, причем этот кусок смолы сам по себе отталкивает другой такой же, также натертый мехом. Он показал, что совершенно подобное же проявляют и другие тела, которые приведены в электрическое состояние прикосновением к ним наэлектризованного стекла или наэлектризованной смолы: тела, наэлектризованные натертым шерстью стеклом, отталкивают друг друга и, обратно, притягивают к себе тела, которые были наэлектризованы натертой мехом смолой. Дю-Фэ назвал Э. стекла, натертого шерстью, "стеклянным", Э. смолы, натертой мехом, "смоляным". Независимо от Дю-Фэ то же самое открытие было сделано (в 1747 г.) Франклином, который соответственно своей гипотезе об Э. назвал первоеположительным Э., второеотрицательным Э. Эти названия Франклина и удержались в науке. В 1745 г. Клейст и почти в то же время Кунеус в Лейдене случайно заметили явление, которое послужило к устройству так назыв. лейденских банок. Дальнейшие исследования лейденской банки и вообще электрических конденсаторов принадлежат Франклину. Хотя еще фон Герике наблюдал явление электрической индукции, но первый подробно описавший это явление и старавшийся объяснить его был Кантон. Вильке и затем в особенности Эпинус расширили сведения о явлениях электрической индукции. Эпинус пытался даже представить законы индукции в математической форме. В 1759 г. Сеймер (Symmer) связал все известные в то время электрические явления предложенною им гипотезой двух электрических жидкостей. По этой гипотезе Э. есть особая субстанция, не подчиняющаяся всемирному тяготению и обладающая свойством проникать в материальные тела, — субстанция весьма подвижная, наподобие идеальной жидкости. Существуют две такие субстанции, две электрические жидкости: положительная и отрицательная. Части одной и той же жидкости взаимно отталкивают друг друга, части двух различных жидкостей взаимно притягивают друг друга. В каждом проводящем теле, пока оно не наэлектризовано, содержится одно и то же количество двух этих субстанций, смешанных друг с другом. Но эти две субстанции могут быть частью отделены друг от друга. Разделение их друг от друга и обусловливает электризацию тела. Каждая из этих субстанций может передаваться от одного тела другому при непосредственном прикосновении этих тел. Таким образом и сообщается электрическое состояние от одного тела другому. Гипотеза Сеймера легла в основу математической теории Э. Она и в настоящее время представляет большие удобства для описания электрических явлений, вследствие чего удержалась и доныне в науке. Почти одновременно с гипотезой Сеймера была предложена Франклином другая гипотеза. Франклин допустил существование только одной субстанции, одной электрической жидкости. Эта жидкость, по Франклину, содержится в каждом теле, и до тех пор, пока она содержится в теле в определенном количестве, это тело не обнаруживает признаков электрического состояния. Но если вследствие какой-нибудь причины количество этой жидкости в теле увеличится, тело явится наэлектризованным положительно. Наоборот, если количество этой жидкости уменьшится, тело получит свойства отрицательно наэлектризованного. Самый процесс электризации представляет собой, по Франклину, перераспределение электрической жидкости в теле. Для объяснения электрических притяжений и отталкиваний Франклин принял, что частицы электрической жидкости, равно как и частицы обыкновенной материи, взаимно отталкиваются, частицы же материи и частицы электрической жидкости взаимно притягиваются. Таким образом, наблюдаемое действие друг на друга двух каких-либо тел является результатом четырех отдельных взаимодействий: материи и Э. первого тела на материю и Э. второго. Теория Франклина не получила большого распространения. Однако в 70-х годах прошлого (XIX) столетия известный шведский физик Эдлунд предложил теорию, весьма близкую к теории Франклина. По мнению Эдлунда, положительное Э. — это уплотненный эфир, отрицательное Э. — это эфир, которого плотность меньше нормальной. Эдлунд так же, как и Франклин, допускал, что частицы материи, равно как и частицы эфира в отдельности взаимно отталкиваются, обратно, что частицы материи и частицы эфира друг друга взаимно притягивают. Несмотря на довольно значительное число различных фактов из области электрических явлений, сделавшихся известными во второй половине XVIII столетия, вплоть до 1785 года изучение этих явлений носило только качественный характер. В 1785 г. явился мемуар Кулона, в котором был формулирован количественный закон, управляющий электрическими взаимодействиями. Этот закон, называемый и поныне законом Кулона, был выведен последним на основании данных опытов. Он положил начало строгому изучению явлений электричества при весьма обширном пользовании для этого математическим анализом. В действительности же, как это оказалось в семидесятых годах XIX столетия, еще за 12 лет раньше Кулона и также на основании опытов был найден Кэвендишем совершенно такой же закон электрических действий. Но работы Кэвендиша оставались неопубликованными в течение целого столетия, они хранились в архиве Кембриджского университета. Лишь в 1879 году Максвелл обнародовал мемуары Кэвендиша, повторив предварительно с более точными инструментами его опыты. Закон Кулона может быть формулирован следующим образом. Два количества электричества, мысленно сосредоточенные в двух отдельных точках, взаимно отталкивают друг друга, если они одноименны, и взаимно притягивают друг друга, если они разноименны, с силой, которая пропорциональна произведению этих количеств и обратно пропорциональна квадрату расстояния между ними. Крайняя простота закона Кулона и полное подобие его установленному Ньютоном закону всемирного тяготения дали возможность построения изящной в математическом отношении теории электричества. Грин, Гаусс, Пуассон особенно развили эту теорию (см Электростатика). В девяностых годах XVIII столетия на основании случайно подмеченного Гальвани факта Александр Вольта открывает совершенно новую область электрических явлений, находит, что два разнородных проводника приобретают электрические состояния, один электризуется положительно, другой отрицательно, только оттого, что они приводятся в тесное соприкосновение друг к другу. Это открытие Вольты и послужило началом открытия целого ряда явлений, довольно скоро представивших собой весьма обширную группу, получившую общее название явлений гальванического тока (см. Гальванизм, Электрический ток). Особенного внимания заслуживают открытия нижеследующих явлений этой категории. В 1800 г. Карлейль и Никольс впервые произвели разложение воды действием электрического тока. В 1802 г. Дэви впервые получил при посредстве батареи из 2000 элементов (медь, цинк, вода) между углями световую дугу, названную в честь Вольты вольтовой дугой. Почти одновременно с Дэви электрический свет при раздвинутых углях был получен и в Петербурге профессором Военно-медицинской академии В. Петровым. В 1820 г. Эрстед открыл действие тока на магнитную стрелку, а непосредственно вслед за этим Ампер произвел ряд открытий новых явлений; он заметил и тщательно исследовал действия между проводниками с токами (см. Электродинамика), действие на проводники с токами магнитов и, наконец, действие на проводники с токами земли. В том же году Араго впервые намагнитил током сталь и железо. В 1822 г. Зеебек открыл явления термоэлектричества. В 1 823 г. Ампер опубликовал теорию электродинамических и электромагнитных явлений. В 1825 г. Стерджен (Sturgeon) устроил первый электромагнит. В 1827 г. Ом установил основной закон явления электрического тока, получивший название закона Ома. Через 4 года, осенью 1831 г., Михаил Фарадей открывает явления индукции токов, в 1834 г. дает законы электролиза, а в 1837 г. показывает важное значение изолирующей среды в явлениях электрической индукции. На основании своих опытов Фарадей приходит к заключению, что все электрические и магнитные действия передаются на расстояние благодаря участию промежуточной среды. В 30-х годах явились весьма важные работы Вебера и Гаусса, в которых впервые электрические и магнитные величины были выражены в абсолютных единицах. В 1844 г. напечатан мемуар академика Э. Х. Ленца, в котором был формулирован закон выделения тепла от действия тока, — закон, названный законом Ленца-Джоуля. В следующем году, в 1845, Фарадей производит два громадной важности открытия: вращение плоскости поляризации света действием магнитного поля и способность намагничивания у всех тел природы. В 1847 г. является мемуар Гельмгольца "Ueber die Elhaltung der Kraft", в котором впервые проводится в область явлений электричества принцип сохранения энергии. Далее шли непрерывно новые и новые открытия, а вместе с ними нарождались и новые взгляды на самую сущность Э. В кратком очерке невозможно даже перечислить все эти открытые явления и выведенные на основании опытов и теоретических представлений различные законы. Но необходимо отметить появление мемуара Максвелла "А dynamical Theory of the electromagnetic Field" (1864) и в особенности классической книги Максвелла "Treatise on Electricity and Magnetism" (1873). В своих мемуарах и в своей книге Максвелл дал совершенно новую теорию электрических и магнитных явлений, представляющую собой развитие идей Фарадея, выраженных в математической форме. Максвелл предсказал конечную скорость распространения в пространстве электромагнитных действий и пришел к заключению, что явления света суть явления электромагнитные, что распространение света есть не что иное, как распространение по направлению луча поперечных электрических колебаний. Этим Максвелл положил основание электромагнитной теории света (см. Электромагнитная теория света). В 188 8 г. замечательные опыты Герца (см. Герца опыты) подтвердили правильность теоретических выводов Максвелла. Необходимо отметить еще появление в 1869 г. мемуара Гитторфа и затем, в 1879 г., появление мемуара Крукса. В этих мемуарах, в особенности в последнем, содержится описание чрезвычайно интересного электрического свечения в сильно разреженном газе, т. е. излагаются исследования над явлением катодных лучей, явлением, которое при дальнейшем его изучении привело к установлению идеи об электроне, иначе — идее об атоме Э. (см. Электронная теория). Эта идея об атоме Э. впервые была высказана Гельмгольцем в 1881 г. в его замечательной речи ("Die neuere Entwickelung von Faradays Ideen über Elektricitä t"), произнесенной в Лондонском химическ. общ., в заседании, которое было посвящено чествованию памяти Фарадея. В 1895 г. Рентген открывает свои лучи, а в следующем году, в 1896 г., А. Беккерель открывает новую область явлений радиоактивности. Выше было упомянуто, что во второй половине XIX стол. возникали новые, отличные от прежнего взгляды на сущность Э. В это время некоторыми физиками высказывалось мнение, что Э. само по себе не есть самобытная субстанция, а представляет собой лишь особое движение эфира, заполняющего исследуемое тело, что электрическое состояние тела является, таким образом, как результат приведения в движение эфира этого тела (Ганкель, Рейнард, Фан дер Флит). До последнего времени полагали, что Э. неотделимо от вещества, что оно непосредственно связано с материей. В настоящее время есть основание полагать, что Э., по крайней мере отрицательное, может быть отделено от обыкновенного вещества, может быть наблюдаемо в отдельности от последнего (см. Электронная теория). Опыты показывают, что Э., как и обыкновенная материя, не уничтожается и не созидается. "Данное количество Э. остается постоянным, какому бы перераспределению и каким бы процессам оно не подвергалось". Таков закон, который был впервые в несколько иной форме высказан еще Фарадеем и затем окончательно подобным образом был формулирован Липманом. Фарадей указал еще на то обстоятельство, что всегда данному заряду на каком-нибудь теле соответствует появление такого же по величине, но обратного по знаку заряда в другом месте, причем оба эти заряда как бы связаны друг с другом при посредстве так назыв. "трубок электрических сил". Эти трубки сил, возникающие в изолирующей среде и соединяющие собой равные, но противоположные по знаку количества Э., представляют собой направления "поляризации" среды, т. е. направления особых деформаций эфира последней. По Фарадею, самое появление электричеств на поверхностях проводников — лишь следствие влияния на них поляризованной окружающей среды. На основании весьма простых опытов Фарадей пришел к заключению, что в изолирующей среде, в которой возбуждено электрическое поле, т. е. в которой находятся наэлектризованные тела, а следовательно, могут быть наблюдаемы электрические силы, существуют вдоль трубок силы натяжения, по направлениям же, перпендикулярным к этим трубкам, — давления. Максвелл в своей теории Э. дал математическое доказательство этого положения Фарадея. То же самое, еще более строгим образом, было доказано Гельмгольцем в его замечательном мемуаре "Ueber die auf das Innere magnetisch oder di ë lektrisch polarisirter К örper wirkenden Kräfte" ("Wissenschaftlich e Abhandl.", I, стр. 798). Нужно заметить, что сам Фарадей совсем не затрагивал вопроса о сущности того, что мы называем Э. Для его теории, а равным образом и для теории Максвелла равнозначительно, представляет ли из себя Э. особую самобытную субстанцию, или же оно является лишь особым состоянием материи. Как уже упомянуто выше, появление какого-либо количества Э. на элементе поверхности электризуемого каким бы то ни было способом проводника сопровождается, по Фарадею, получением такого же по величине, но обратного по знаку количества Э. в конце проведенной через этот элемент трубки сил (или, точнее, по Масквеллу, трубки индукции) — там, где эта трубка встречает поверхность другого проводника. Согласно теории Максвелла, по всей длине трубки сил (индукции) в любом поперечном сечении ее происходит процесс, подобный тому, какой наблюдается на концах этой трубки, т. е. по обеим сторонам этого сечения появляются Э., равные по количеству, но противоположные по знаку. Эти Э. не могут быть наблюдаемы, так как они компенсируются электричествами, появляющимися в соседнем слое. Такое явление, такое как бы разделение Э. вдоль трубок сил (индукции) Максвелл назвал электрическим смещением (electric displacement). По Максвеллу, "электрическое смещение", отнесенное к единице поперечного сечения пучка трубок сил (индукции), выражается формулой: D = (1/4 π)·KF, в которой K обозначает диэлектрическую постоянную данной среды, а F — силу, испытываемую в том месте, где определяется электрическое смещение, единицей количества Э. Что на самом деле представляет собой деформация, названная электрическим смещением, т. е. в чем состоит самый механический процесс, происходящий при этом в каждом элементе среды, неизвестно. Но по внешности этот процесс можно уподобить перемещению положительного Э. по направлению электрической силы и отрицательного Э., того же количества, по направлению прямо противоположному. Электрическое смещение, т. е. электрическая деформация, сохраняется лишь только в изолирующей среде. В проводнике энергия, возникшая вследствие электрического смещения, почти моментально превращается в энергию тепловую. Таким образом, только изоляторы обладают "электрической упругостью". Таково основное положение теории Фарадея-Максвелла. Так как уже не раз употреблялось выражение "количество Э.", то очевидно, что электричество подчинено измерению. О количестве Э. мы судим по тем действиям, какие оно вызывает. Так, количество Э. мы можем измерить по силе, с какой это количество действует на другое, нам известное, — по тому отклонению, какое испытывает магнит гальванометра, когда это количество Э. в виде кратковременного электрического тока пройдет через обмотку этого гальванометра, — по количеству разложенного электролита или выделившегося на электроде того или другого продукта этого разложения, произведенного прохождением через электролит измеряемого количества Э., — по количеству тепла, получающегося в проводниках, через которые прошло это количество Э. при разряде содержавшего его тела, и т. д. Мы можем, наконец, вычислить количество Э., заключающееся в каком-нибудь проводящем теле, если только определим электрический потенциал этого тела и будем знать его электроемкость, ибо между количеством Э. (Q) на проводящем теле, потенциалом (V) этого тела и электроемкостью (С) последнего существует зависимость: Q = СV. В настоящее время употребляются три различных единицы для измерения количества Э. Смотря по условиям вопроса, является более удобной та или другая из этих единиц. Эти единицы суть следующие: 1. Абсолютная электростатическая единица количества Э. в системе сантиметр-грамм-секунда. За такую единицу принимают то количество Э., которое, мысленно сосредоточенное в одной точке, действует на другое, равное ему, количество Э. и также сосредоточенное в одной точке, отстоящей от первой на расстоянии одного сантиметра, причем окружающей средой является воздух, с силой в один дин. "Размеры" или "измерения" основных единиц, т. е. единицы длины (L), массы (М) и времени (Т), соответствующие абсолютной электростатической единице количества Э. (Q е), суть в последовательном порядке: 3/2, 1/2 и —1, т. е., если мы скобками обозначим, что определяем "размеры" единиц, мы получаем [Qe] = [L3/2M1/2T-1]. 2. Абсолютная электромагнитная единица количества Э. в системе сантиметр-грамм-секунда. Такой единицей представляется то количество Э., которое проходит в одну секунду через поперечное сечение проводника, когда в этом проводнике существует электрический ток, сила которого равняется абсолютной электромагнитной единице силы тока в системе С. G. S. (см. Единицы, Электрический ток). Как показывают опытные исследования, прохождение абсолютной электромагнитной единицы количества Э. через раствор азотно-серебряной соли сопровождается выделением на катоде серебра в количестве 0,01118 гр. Размеры основных единиц, соответствующие абсолютной электромагнитной единице количества Э. (Qm), определяются по символическому выражению [Qm] = [L1/2·M1/2·T-2]. 3. Практическая единица количества Э., т. е. кулон. Кулон — то количество Э., которое при охлаждении через раствор азотно-серебряной соли выделяет на катоде 0,001118 гр. серебра. Итак, 1 кулон = 1/10 абсол. электромагнитной един. количества Э. Абсолютная электромагнитная единица количества Э. больше абсол. электрост. единицы в 3 x 10 10 раз. Точнее, отношение между этими двумя единицами выражается через Qm/Q е = 3 x 1010 см/сек., т. е. это отношение равняется скорости света (см. Электромагнитная теория света). На основании исследований явлений электролиза, действий, производимых лучами ультрафиолетовыми, Беккерелевыми и Рентгеновыми, определена величина атома Э. (см. Электронная теория). Эта величина выражается через e = 3,4 x 10-10 абс. электрост. ед. = = 10-20 (приблизит.) абс. электромаг. ед. = = 10-19 (приблизительно) кулона. При допущении существования электричества вне материи. т. е. отдельно от нее, не представляется абсолютно необходимым принятие существования особой электрической субстанции. Возможно атом Э. рассматривать как очень малый объем, в котором заключающийся эфир находится в особом состоянии, т. е. возможно атом Э. принимать за центр особой деформации эфира, из которого в этом эфире расходятся во все стороны соответствующие возмущения. Такое воззрение на природу электронов проводит в своей теории Лоренц. Согласно теории Максвелла, количество Э. Q, заключающееся в каком-нибудь теле, может быть выражено формулой В этой формуле интеграл распространяется по любой замкнутой поверхности, окружающей собой данный заряд Q; F обозначает величину электрической силы, которую испытывала бы единица количества Э., находящаяся на элементе поверхности; ε — угол, который составляет с нормалью к элементу поверхности эта сила, и K — диэлектрический коэффициент среды, в которой находится элемент поверхности dS. И. Боргман. Электричество: а) актиноэлектричество, б) пьезоэлектричество, в) пироэлектричество — см. Электризация. Термоэлектричество открыто в июле 1821 г. Зеебеком (Тh.-Joh. Seebeck, 1770—1831). Этим термином обозначают особый разряд электрических явлений, возникающих под действием теплоты так же, как и некоторые тепловые явления, возникающие под действием электрического тока. В обыкновенной своей форме термо-Э. обнаруживается в виде электрического тока, появляющегося в замкнутой цепи, состоящей из разнородных металлических проводников, когда местам соприкосновения (или спаям) этих проводников сообщаются неодинаковые температуры; оно может, однако, возникать и в других проводниках (уголь, многие минералы), а также в жидкостях (растворы солей и кислот). Соединение двух проводников, спаянных на концах, причем этим спаям сообщены разные температуры, называется термоэлектрической парой; возникающая в ней электродвижущая сила по величине и направлению зависит от природы взятых проводников, а также от температур обоих спаев. Так, при разности температур спаев в 1° С. и при температуре более нагретого спая, равной 20° С., получаются, по наблюдениям Маттиссена, следующие термоэлектрические силы в парах из свинца в соединении с различными металлами:
Висмут +0,000089
Кобальт +0,000022
Ртуть +0,000000418
Свинец 0
Латунь —0,0000001
Медь —0,0000001
Платина —0,0000009
Золото —0,0000012
Серебро —0,0000030
Цинк —0,0000037
Мышьяк —0,00001336
Железо —0,00001715
Сурьма —0,0000226
Фосфор (красный) —0,0000297
Здесь электродвижущие силы выражены в практических единицах, т. е. в вольтах; знак + показывает, что электродвижущая сила направлена в более нагретом спае от соответственного металла к свинцу; знак — указывает на ее обратное направление. Для определения термоэлектрических сил в парах, составляемых переименованными металлами между собой, следует из числа, соответствующего металлу, расположенному выше, вычесть число нижестоящего металла; знак + покажет направление электродвижущей силы в нагретом спае от первого металла ко второму. Такой расчет основан на следующем законе Беккереля: если два металла отделены друг от друга одним или несколькими промежуточными металлами, имеющими постоянную температуру t, то термоэлектрическая сила, образующаяся в такой цепи, будет та же, как если бы металлы непосредственно касались друг друга и температура этого места соединения была бы равна t. Из этого закона и из указанного выше правила расчета термоэлектрических сил между металлами вытекает еще другой закон, а именно что термоэлектрическая сила какой-либо пары металлов М и N равна алгебраической сумме термоэлектрических сил в отдельных парах металлов M и A, A и B, B и C, C и N при тех же температурах спаев. Термоэлектрический ток может возникать в цепи, состоящей из проводников, разнородных не только в химическом, но и в физическом смысле. Так, термоэлектрические пары могут быть составлены из двух проводников одного и того же металла, если физические свойства одного из них каким-либо образом изменены (растяжение, сжатие, кручение, намагничение и пр.). Однако неравномерное распределение температуры в однородном во всех других отношениях проводнике не может, по наблюдениям Магнуса, служить источником термоэлектрического тока. При небольших разностях температур спаев термоэлектрических пар их электродвижущие силы можно считать, по наблюдениям Беккереля, пропорциональными этим разностям. Однако при больших разностях опыт показывает, что электродвижущая сила пары стремится к определенному максимуму, затем убывает до нуля и, наконец, переменяет свой знак. Такой ход термоэлектрической силы в зависимости от температур спаев выражается весьма точно следующей формулой Авенариуса, подтверждаемой теоретическими соображениями: Отсюда видим, что = 0, когда t1 + t2 = 2tn, и что = мах., когда = 0, т. е. при t2 = tn. Температура tn называется температурой нейтральной точки. Напр. из опытов Авенариуса для пары медь — железо находим в условных единицах: b = 0,9653, е = —0,00175; отсюда tn = 275,8° C. Итак, в термоэлектрической паре медь — железо электродвижущая сила достигает максимума при температуре нагретого спая t2 = 275,8° С. и равна нулю — в предположении, что температура холодного спая равна 0° С. при температуре нагретого спая, равной 561,6° С. Полагая в формуле Авенариуса t2 = 0, t2= t и взявши производную по t, получаем: dE/dt = ktn kt = a + bt (где положено ktn = а и k = b). Такая функция называется термоэлектрической способностью данной пары. В нижеследующей таблице указаны термоэлектрические способности различных металлов относительно свинца, по наблюдениям Тэта:
Железо 1784 — 4,87 t
Сталь 1139 — 3,28 "
Сплав платины 95 % и иридия 5 % 622 — 0,55 "
Сплав платины 90 % и иридия 10 % 596 — 1,34 "
Сплав платины 85 % и иридия 15 % 709 — 0,63 "
Магний 244 — 0,95 "
Нейзильбер (до 175°) — 1207 — 5,12 "
Кадмий (до 258°) 266 + 4,29 "
Цинк (до 373°) 234 + 2,40 "
Серебро 214 + 1,50 "
Золота 283 + 1,02 "
Медь 136 + 0,95 "
Олово — 43 + 0,55 "
Алюминий — 77 + 0,39 "
Палладий — 625 — 3,59 "
Никель (до 175°) — 2204 — 5,12"
В этой таблице термоэлектрические способности выражены в абсолютных единицах; чтобы перейти к практическим единицам и получить термоэлектрические силы в вольтах, нужно разделить числа на 10 8. Таблица справедлива для температур от —18° до 416°, за исключением нейзильбера, кадмия, цинка и никеля, для которых высшие пределы температуры отмечены отдельно в таблице. Знак + соответствует направлению тока от свинца к данному металлу. Из сравнения таблицы с формулой термоэлектрической способности видим, что числа первого столбца представляют собой значения коэффициента а, а числа второго столбца равны b. Подставляя эти числа в формулу Авенариуса, мы получим термоэлектрические силы пар, образованных из данных металлов и свинца, а зная их, можем найти по указанному выше закону Беккереля термоэлектрические силы пар различных металлов. Полная математическая теория термоэлектрических явлений дана лордом Кельвином (В. Томсон). В этой теории он рассматривает термоэлектрическую цепь как тепловую машину, в которой теплота, перетекая от теплого спая к холодному, частью превращается в работу, согласно первому и второму законам термодинамики, и вызывает электрический ток. Предполагая, что теплота превращается в энергию электрического тока только в местах спаев термоэлектрической цепи, из формул этой теории мы получаем закон Беккереля, устанавливающий пропорциональность между электродвижущей силой термоэлектрической пары и разностью температур ее спаев; предположение же, что связь между теплотой и Э. существует и вдоль проводников, по которым распространяется поток теплоты, приводит нас при наиболее простых предположениях относительно этой связи к формуле Авенариуса. Параллельно возникновению термоэлектрического тока при существовании разности температур в цепи разнородных проводников наблюдается и обратное явление, открытое Пельтье: нагревание и охлаждение спаев разнородных проводников при прохождении через них электрического тока; при этом распределение температур получается обратным тому, которое нужно создать, чтобы вызвать термоэлектрический ток того же направления. По наблюдениям Квинтуса-Ицилиуса, количество теплоты, выделяемой или поглощаемой в спаях в определенное время, пропорционально силе проходящего тока. При одной и той же силе тока это количество зависит от температуры спая и термоэлектрической способности данной пары металлов по формуле, выведенной лордом Кельвином и подтвержденной опытами Бателли: π = 1/А · Т ·(dE/dT). Здесь π есть теплота, соответствующая явлению Пельтье при прохождении электромагнитной единицы количества Э., А — механический эквивалент теплоты, Т — абсолютная температура спая, а (dE/dT) — термоэлектрическая способность данной пары металлов. Явление Пельтье можно рассматривать как перенос тепла электрическим током между спаями разнородных металлов. Лорд Кельвин (В. Томсон) открыл подобное же явление переноса тепла и в однородных, неравномерно нагретых проводниках. По наблюдениям Леру, такой перенос тепла (явление Томсона) происходит в металлах: сурьма, кадмий, цинк, медь, серебро, сплав (10 ч. висмута и 1 ч. сурьмы) по направлению тока, а в металлах: железо, висмут, нейзильбер, платина, алюминий и олово — в обратном направлении, причем скорость его пропорциональна силе тока. В свинце явление Томсона почти не наблюдается. Согласно теории лорда Кельвина, количество тепла σ, переносимое единицей количества Э. в каком-либо металле при падении температуры 1° С. на 1 см, выражается формулой: σ = —1/А · Т ·(d2E/dT2), где а и Т имеют вышеуказанные значения, а (d2E/dT2) есть производная по температуре от термоэлектрической способности данного металла относительно свинца. Формула подтверждается опытами Бателли. Для объяснения явлений термоэлектричества с физической точки зрения существуют две разных гипотезы. Одна гипотеза, "контактная", сводит объяснение термоэлектрических сил к электризации при соприкосновении разнородных проводников, рассматривая ее как разность электродвижущих сил соприкосновения, являющуюся вследствие различных температур в местах контактов; однако наблюдения над зависимостью электризации при соприкосновении от температуры не дают численного совпадения этих разностей с наблюдаемыми термоэлектрическими силами. Другая гипотеза, предложенная Ф. Кольраушем, рассматривает термоэлектрические явления как результат существования связи между движением теплового потока, возникающего в проводнике при существовании разности температур на его концах, и движением электрического тока. Эта гипотеза объясняет одинаково удовлетворительно как возникновение термоэлектрического тока под влиянием тепловых потоков, распространяющихся проводником, составляющим термоэлектрическую пару, от теплого спая к холодному и вследствие различной природы этих проводников вызывающих в них различные электродвижущие силы, так и перенос теплоты под влиянием электрического тока в явлениях Пельтье и Томсона. Термоэлектрические элементы и батареи. Термоэлектрическим током пользуются для практических целей в двух случаях: 1) в качестве весьма чувствительного и постоянного измерителя разности температур и 2) для получения наиболее простым способом электрической энергии насчет тепловой. В первом случае пользуются термоэлектрическим столбиком Меллони или пирометром Лешателье. Столбик Меллони, служащий для измерения, главным образом, лучистой теплоты, состоит обыкновенно из 50 брусков висмута и сурьмы около 4—5 см длины, соединенных между собой последовательно, причем висмут и сурьма чередуются друг с другом, и сложенных в призматическое тело так, что четные спаи приходятся на одной стороне его, а нечетные — на другой. Небольшой разности в температурах двух сторон этого столбика достаточно, чтобы вызвать в нем электрический ток, пропорциональный этой разности. Пиромометр Лешателье служит для измерения высоких температур; он состоит из двух проволок: платиновой и приготовленной из сплава родия и платины, которые помещаются внутри огнеупорной трубы и одними концами соединены между собой, а другими — с чувствительным гальванометром. Место соединения проволок между собой вводится в пространство высокой температуры, причем появляющийся ток измеряет разность между этой температурой и температурой окружающей среды. Пиромометром Лешателье можно измерять температуры до 1200° С. с точностью до 10°. Для получения сильных термоэлектрических токов, которыми можно было бы пользоваться для практических целей, выбирают пары, дающие наибольшую электродвижущую силу. К таким парам принадлежат: железо, никель, нейзильбер (или мельхиор), с одной стороны, и сплавы сурьмы и цинка — с другой. Наиболее употребительны термоэлектрические батареи Ное и Кламона; в обеих батареях источником теплоты служит пламя газовой горелки, причем по измерениям, произведенным над батареей Кламона, 1 куб. м светильного газа производит 9000 килограммометров работы в форме электрического тока, что дает для полезного действия этой батареи величину около 0,2 %. Вообще, полезное действие термоэлектрических батарей весьма невелико даже при самых благоприятных условиях, хотя, с точки зрения термодинамики, при тех высоких разностях температур, которые в них существуют, мы могли бы ожидать полезного действия не меньшего, чем для других тепловых машин. Это противоречие объясняется громадными потерями теплоты, происходящими вследствие перехода ее через теплопроводность металлических частей батареи от нагретых спаев к холодным. Условия для уменьшения этих потерь и составления наиболее экономической батареи следующие: 1) следует выбрать такую пару металлов или металлических сплавов, которые при данной разности температур дают наибольшую термоэлектрическую силу; 2) придать проводникам, входящим в состав пары, такие относительные размеры, чтобы они имели одинаковые сопротивления; абсолютные размеры пары не имеют никакого значения для полезного действия батареи; 3) составить из этих пар батарею таким образом, чтобы ее электрическое сопротивление было равно заданному сопротивлению внешней цепи. При соблюдении этих условий полезное действие батареи выражается приблизительно формулой: P = (t2 — t1)·[b + c(t2 + t1)]/32000·A; здесь P обозначает полезное действие, t2 и t1 — температуры спаев, b и c — коэффициенты в формуле Авенариуса, выраженные в абсолютных единицах, и А = 4,164·107 — механический эквивалент теплоты. Для наиболее сильной из возможных на практике батарей эта формула дает величину полезного действия не более 2—3 %. Б. Розинг.

Определение слова «Электричество» по БСЭ:
Электричество - совокупность явлений, обусловленных существованием, движением и взаимодействием электрически заряженных тел или частиц. Взаимодействие электрических зарядов осуществляется с помощью электромагнитного поля (в случае неподвижных электрических зарядов - электростатического поля; см. Электростатика). Движущиеся заряды (Электрический ток) наряду с электрическим возбуждают и магнитное поле, т. е. порождают электромагнитное поле, посредством которого осуществляется электромагнитное взаимодействие (учение о Магнетизме, т. о., является составной частью общего учения об Э.). Электромагнитные явления описываются классической электродинамикой, в основе которой лежат Максвелла уравнения.
Законы классической теории Э. охватывают огромную совокупность электромагнитных процессов. Среди 4 типов взаимодействий (электромагнитных, гравитационных, сильных и слабых), существующих в природе, электромагнитные занимают первое место по широте и разнообразию проявлений. Это связано с тем, что все тела построены из электрически заряженных частиц противоположных знаков, взаимодействия между которыми, с одной стороны, на много порядков интенсивнее гравитационных и слабых, а с другой - являются дальнодействующими в отличие от сильных взаимодействий. Строение атомных оболочек, сцепление атомов в молекулы (химические силы) и образование конденсированного вещества определяются электромагнитным взаимодействием.
Историческая справка. Простейшие электрические и магнитные явления известны ещё с глубокой древности. Были найдены минералы, притягивающие кусочки железа, а также обнаружено, что янтарь (греч. электрон, elektron, отсюда термин Э.), потёртый о шерсть, притягивает лёгкие предметы (электризация трением). Однако лишь в 1600 У. Гильберт впервые установил различие между электрическими и магнитными явлениями. Он открыл существование магнитных полюсов и неотделимость их друг от друга, а также установил, что земной шар - гигантский магнит.
В 17 - 1-й половине 18 вв. проводились многочисленные опыты с наэлектризованными телами, были построены первые электростатические машины, основанные на электризации трением, установлено существование электрических зарядов двух родов (Ш. Дюфе), обнаружена электропроводность металлов (английский учёный С. Грей). С изобретением первого конденсатора - лейденской банки (1745) - появилась возможность накапливать большие электрические заряды. В 1747-53 Б. Франклин изложил первую последовательную теорию электрических явлений, окончательно установил электрическую природу молнии и изобрёл молниеотвод.
Во 2-й половине 18 в. началось количественное изучение электрических и магнитных явлений. Появились первые измерительные приборы - электроскопы различных конструкций, электрометры. Г. Кавендиш (1773) и Ш. Кулон (1785) экспериментально установили закон взаимодействия неподвижных точечных электрических зарядов (работы Кавендиша были опубликованы лишь в 1879). Этот основной закон электростатики (Кулона закон) впервые позволил создать метод измерения электрических зарядов по силам взаимодействия между ними. Кулон установил также закон взаимодействия между полюсами длинных магнитов и ввёл понятие о магнитных зарядах, сосредоточенных на концах магнитов.
Следующий этап в развитии науки об Э. связан с открытием в конце 18 в. Л. Гальвани «животного электричества» и работами А. Вольты, который правильно истолковал опыты Гальвани присутствием в замкнутой цепи 2 разнородных металлов в жидкости и изобрёл первый источник электрического тока - гальванический элемент (т. н. Вольтов столб, 1800), создающий непрерывный (постоянный) ток в течение длительного времени. В 1802 В. В. Петров, построив гальванический элемент значительно большей мощности, открыл электрическую дугу, исследовал её свойства и указал на возможность применений её для освещения, а также для плавления и сварки металлов.
Г. Дэви электролизом водных растворов щелочей получил (1807) неизвестные ранее металлы - натрий и калий. Дж. П. Джоуль установил (1841), что количество теплоты, выделяемой в проводнике электрическим током, пропорционально квадрату силы тока; этот закон был обоснован (1842) точными экспериментами Э. Х. Ленца (закон Джоуля - Ленца). Г. Ом установил (1826) количественную зависимость электрического тока от напряжения в цепи. К. ф. Гаусс сформулировал (1830) основную теорему электростатики (см. Гаусса теорема).
Наиболее фундаментальное открытие было сделано Х. Эрстедом в 1820; он обнаружил действие электрического тока на магнитную стрелку - явление, свидетельствовавшее о связи между электричеством и магнетизмом. Вслед за этим в том же году А. М. Ампер установил закон взаимодействия электрических токов (Ампера закон). Он показал также, что свойства постоянных магнитов могут быть объяснены на основе предположения о том, что в молекулах намагниченных тел циркулируют постоянные электрические токи (молекулярные токи). Т. о., согласно Амперу, все магнитные явления сводятся к взаимодействиям токов, магнитных же зарядов не существует. Со времени открытий Эрстеда и Ампера учение о магнетизме сделалось составной частью учения об Э.
Со 2-й четверти 19 в. началось быстрое проникновение Э. в технику. В 20-х гг. появились первые электромагниты. Одним из первых применений Э. был телеграфный аппарат, в 30-40-х гг. построены электродвигатели и генераторы тока, а в 40-х гг.- электрические осветительные устройства и т. д. Практическое применение Э. в дальнейшем всё более возрастало, что в свою очередь оказало существ, влияние на учение об Э.
В 30-40-х гг. 19 в. в развитие науки об Э. внёс большой вклад М. Фарадей - творец общего учения об электромагнитных явлениях, в котором все электрические и магнитные явления рассматриваются с единой точки зрения. С помощью опытов он доказал, что действия электрических зарядов и токов не зависят от способа их получения [до Фарадея различали
«обыкновенное» (полученное при электризации трением), атмосферное, «гальваническое», магнитное, термоэлектрическое, «животное» и другие виды Э.]. В 1831 Фарадей открыл индукцию электромагнитную - возбуждение электрического тока в контуре, находящемся в переменном магнитном поле. Это явление (наблюдавшееся в 1832 также Дж. Генри) составляет фундамент электротехники. В 1833-34 Фарадей установил законы Электролиза; эти его работы положили начало электрохимии. В дальнейшем он, пытаясь найти взаимосвязь электрических и магнитных явлений с оптическими, открыл поляризацию диэлектриков (1837), явления Парамагнетизма и Диамагнетизма (1845), магнитное вращение плоскости поляризации света (1845) и др.
Фарадей впервые ввёл представление об электрическом и магнитном полях. Он отрицал концепцию дальнодействия, сторонники которой считали, что тела непосредственно (через пустоту) на расстоянии действуют друг на друга. Согласно идеям Фарадея, взаимодействие между зарядами и токами осуществляется посредством промежуточных агентов: заряды и токи создают в окружающем пространстве электрическое или (соответственно) магнитное поля, с помощью которых взаимодействие передаётся от точки к точке (концепция близкодействия). В основе его представлений об электрическом и магнитном полях лежало понятие силовых линий, которые он рассматривал как механические образования в гипотетической среде - Эфире, подобные растянутым упругим нитям или шнурам.
Идеи Фарадея о реальности электромагнитного поля не сразу получили признание. Первая математическая формулировка законов электромагнитной индукции была дана ф. Нейманом в 1845 на языке концепции дальнодействия. Им же были введены важные понятия коэффициентов само- и взаимоиндукции токов. Значение этих понятий полностью раскрылось позднее, когда У. Томсон (лорд Кельвин) развил (1853) теорию электрических колебаний в контуре, состоящем из конденсатора (электроёмкость) и катушки (индуктивность).
Большое значение для развития учения об Э. имело создание новых приборов и методов электрических измерений, а также единая система электрических и магнитных единиц измерений, созданная Гауссом и В. Вебером (см. Гаусса система единиц). В 1846 Вебер указал на связь силы тока с плотностью электрических зарядов в проводнике и скоростью их упорядоченного перемещения. Он установил также закон взаимодействия движущихся точечных зарядов, который содержал новую универсальную электродинамическую постоянную, представляющую собой отношение электростатических и электромагнитных единиц заряда и имеющую размерность скорости. При экспериментальном определении (Вебер и ф. Кольрауш, 1856) этой постоянной было получено значение, близкое к скорости света; это явилось определённым указанием на связь электромагнитных явлений с оптическими.
В 1861-73 учение об Э. получило своё развитие и завершение в работах Дж. К. Максвелла. Опираясь на эмпирические законы электромагнитных явлений и введя гипотезу о порождении магнитного поля переменным электрическим полем, Максвелл сформулировал фундаментальные уравнения классической электродинамики, названные его именем. При этом он, подобно Фарадею, рассматривал электромагнитные явления как некоторую форму механических процессов в эфире. Главное новое следствие, вытекающее из этих уравнений, - существование электромагнитных волн, распространяющихся со скоростью света. Уравнения Максвелла легли в основу электромагнитной теории света. Решающее подтверждение теория Максвелла нашла в 1886-89, когда Г. Герц экспериментально установил существование электромагнитных волн. После его открытия были предприняты попытки установить связь с помощью электромагнитных волн, завершившиеся созданием радио, и начались интенсивные исследования в области радиотехники.
В конце 19 - начале 20 вв. начался новый этап в развитии теории Э. Исследования электрических разрядов увенчались открытием Дж. Дж. Томсоном дискретности электрических зарядов. В 1897 он измерил отношение заряда Электрона к его массе, а в 1898 определил абсолютную величину заряда электрона. Х. Лоренц, опираясь на открытие Томсона и выводы молекулярно-кинетической теории, заложил основы электронной теории строения вещества (см. Лоренца - Максвелла уравнения). В классической электронной теории вещество рассматривается как совокупность электрически заряженных частиц, движение которых подчинено законам классической механики. Уравнения Максвелла получаются из уравнений электронной теории статистическим усреднением.
Попытки применения законов классической электродинамики к исследованию электромагнитных процессов в движущихся средах натолкнулись на существенные трудности. Стремясь разрешить их, А. Эйнштейн пришёл (1905) к относительности теории. Эта теория окончательно опровергла идею существования эфира, наделённого механическими свойствами. После создания теории относительности стало очевидно, что законы электродинамики не могут быть сведены к законам классической механики.
На малых пространственно-временных интервалах становятся существенными квантовые свойства электромагнитного поля, не учитываемые классической теорией Э. Квантовая теория электромагнитных процессов - Квантовая электродинамика - была создана во 2-й четверти 20 в. Квантовая теория вещества и поля уже выходит за пределы учения об Э., изучает более фундаментальные проблемы, касающиеся законов движения элементарных частиц и их строения.
С открытием новых фактов и созданием новых теорий значение классического учения об Э. не уменьшилось, были определены лишь границы применимости классической электродинамики. В этих пределах уравнения Максвелла и классическая электронная теория сохраняют силу, являясь фундаментом современной теории Э. Классическая электродинамика составляет основу большинства разделов электротехники, радиотехники, электроники и оптики (исключение составляет квантовая электроника). С помощью её уравнений было решено огромное число задач теоретического и прикладного характера. В частности, многочисленные проблемы поведения плазмы в лабораторных условиях и в космосе решаются с помощью уравнений Максвелла (см. Плазма, Управляемый термоядерный синтез, Звёзды).
Лит.: Кудрявцев П. С., История физики, М., 1956; Льоцци М., История физики, пер. с итал., М., 1970; Максвелл Дж. К., Избр. соч. по теории электромагнитного поля, [пер. с англ.], М., 1952; Лоренц Г. А., Теория электронов и ее применение к явлениям света и тепловою излучения, пер. с англ., 2 изд., М., 1953; Тамм И. Е., Основы теории электричества, 9 изд., М., 1976.
Г. Я. Мякишев.


Электричество - Электричество («Электричество»,)
ежемесячный научно-технический журнал, орган АН СССР, Государственного комитета Совета Министров СССР по науке и технике и Центрального правления научно-технического общества энергетики и электротехнической промышленности. Один из старейших технических журналов; основан в 1880 в Петербурге по инициативе П. Н. Яблочкова, В. Н. Чиколева, Д. А. Лачинова, А. Н. Лодыгина и др.; с 1922 издаётся в Москве (перерывы в 1917-22, 1941-1944). Освещает актуальные вопросы теории и практики электроэнергетики и электротехники. Тираж (1978) около 19 тыс. экз.

Электрическое Торможение    Электричество    Электричка