Бор

Значение слова Бор по Ефремовой:
Бор - Хвойный, обычно сосновый лес, растущий на сухом возвышенном месте.


Химический элемент, входящий в состав многих минералов, твердое кристаллическое вещество.
Стержень различной формы с насечками, приводимый во вращение бормашиной в зубоврачебной практике.

Значение слова Бор по Ожегову:
Бор - Стальное сверло в бормашине


Бор Сосновый лес

Бор в Энциклопедическом словаре:
Бор - (др.-исл. рожденный) - в скандинавской мифологии один избогов-прародителей, сын первочеловека Бури, отец Одина.


город (с 1938) в Российской Федерации, Нижегородская обл., на р.Волга. Соединен автомобильным мостом с г. Н. Новгород. Железнодорожнаястанция (Моховые Горы). 64,5 тыс. жителей (1992). Машиностроение (судовое,портовое, торговое оборудование), стекольная промышленность. Известен с 14в.
город в республике Сербия. 35 тыс. жителей (1981). Медеплавильнаяпромышленность. В районе Бора - один из крупнейших меднорудных районовстраны. Разрабатывается с 1903. Вулканогенно-осадочные, медно-колчеданныеместорождения. Главное месторождение - бор с разведанными запасами руд 90млн. т. при среднем содержании Cu 1,5%. Общие запасы района 3 млн. т меди.Добыча подземным и открытым способами.
сосновый лес на песчаных и каменистых почвах; иногда с примесьюберезы, почти без подлеска.
(лат. Borum) - В, химический элемент III группы периодической системы,атомный номер 5, атомная масса 10,811. Название от позднелат. borax -бура. Бесцветные, очень твердые кристаллы (из-за примесейсеровато-черные); плотность 2,31 - 2,35 г/см3, tпл 2074 .С. При обычнойтемпературе химически инертен. В природе встречается главным образом ввиде боратов. Применяют как компонент коррозионностойких и жаропрочныхсплавов, композиционных материалов (в т. ч. боропластиков), сплавов длярегулирующих устройств ядерных реакторов, а также для борирования.
(Bohr) Нильс Хенрик Давид (1885-1962) - датский физик, один изсоздателей современной физики. Основатель (1920) и руководитель Институтатеоретической физики в Копенгагене (Институт Нильса Бора); создательмировой научной школы; иностранный член АН СССР (1929). В 1943-45 работалв США. Создал теорию атома, в основу которой легли планетарная модельатома, квантовые представления и предложенные им Бора постулаты. Важныеработы по теории металлов, теории атомного ядра и ядерных реакций. Трудыпо философии естествознания. Активный участник борьбы против атомнойугрозы. Нобелевская премия (1922).
Оге (р. 1922) - датский физик. Сын Н. Бора. Один из авторов обобщенноймодели атомного ядра. Нобелевская премия (1975, совместно с Б.Моттельсоном и Дж. Рейнуотером).
Харальд (1887-1951) - датский математик. Брат Н. Бора. Труды по теориипочти периодических функций.

Значение слова Бор по словарю медицинских терминов:
Бор - см. Вериго-Бора... Синонимы к слову Бор: бор см. лес

Значение слова Бор по словарю Ушакова:
БОР
бора, мн. нет, м. (иностр.) (хим.). Одно из простых химических веществ, входящих в состав многих минералов.


БОР
бора, о боре, в бору, мн. боры, боров, м. Большой, густой хвойный лес. Сосновый бор. С бору да с сосенки или с бору по сосенке (поговорка) - Откуда попало, без разбора. Откуда сыр бор загорелся (т. е. сырой бор; поговорка) - из-за чего затеялось дело, отчего начался переполох.
БОР
бора; м. (от нем. Bohrer - бурав) (мед.). Стальное сверло с мелкими острыми нарезками, употр. в зубоврачебном деле. Бормашина (спец.) - аппарат для высверливания частей зуба.

Значение слова Бор по словарю Даля:
Бор
м. (брать) браньё, взятие, отпуск и прием; бору нет, говорят купцы, разбору, спросу на товар. | Костр. торг. базар, рынок, торжок; новинный бор, холщевый базар. | Стар. сбор, побор, подать, денежная повинность. Бором, борком брать, руками


Бор
м. химич. горючее вещество, добываемое из буры и служащее основанием борной кислоте.

Значение слова Бор по словарю Брокгауза и Ефрона:
Бор — название растений, по преимуществу видов проса (см.) Panicum, щетинницы (см.) Setaria и просяника (см.) Milium. Б., боровицею зовется в Олонецкой, Владимирской губ. также вереск (см.; Calluna), произрастающий на боровых местах.


Бор (borum, стар. назв. boracium и boron, последнее принято еще и теперь у англичан; хим. форм. В; атомный вес 11) — неметаллический элемент, в свободном состоянии известный в двух аллотропических видоизменениях: аморфном и кристаллическом. В аморфном виде бор был получен в 1808 г. Гей-Люссаком и Тенаром и ближе изучен в 1857 г. Вёлером и Сен-Клер-Девиллем, давшими способы приготовления кристаллического бора. В природе это тело никогда не встречается в свободном состоянии, но лишь в соединении с кислородом в виде борной кислоты и некоторых ее солей. По свойствам своим бор близко стоит к углероду: обыкновенному углю соответствует аморфный бор, представляющий порошок бурого цвета без вкуса и запаха; кристаллический (или алмазный) бор по блеску и твердости весьма сходен с алмазом. Для получения аморфного бора (по Вёлеру и Девиллю) в раскаленный чугунный тигель всыпают смесь 100 ч. борного ангидрида с 60 ч. металлического натрия и покрывают все слоем прокаленной поваренной соли (от 40 до 50 ч.); наступает бурная реакция, причем часть борного ангидрида отдает свой кислород натрию; бор выделяется в свободном состоянии, и вместе с тем образуется бура; сплав перемешивают железным прутом, выливают в воду, подкисленную соляной кислотой, и собирают остающийся нерастворенным бор на фильтре; в виде аморфного порошка он легко проходит через поры бумаги, висит в воде и сообщает ей бурую окраску, так что его считают в воде растворимым; сушить порошок следует на пористых фарфоровых пластинках при обыкновенной температуре, так как при более сильном подогревании бор легко загорается. Берцелиус приготовлял его, нагревая борофтористый калий KBF 4 с металлическим калием. Магний, а также уголь и фосфор восстановляют бор из его окиси. Аморфный бор легко реагирует со многими веществами: загораясь при накаливании на воздухе, он соединяется не только с кислородом, но и с азотом; кислоты, особенно при нагревании, окисляют его в борную кислоту; щелочи действуют подобным же образом, с выделением водорода; при высокой температуре металлы, сера, хлор, бром прямо соединяются с бором. Для получения кристаллического видоизменения плотно набивают небольшой тигель аморфным бором, просверливают в массе небольшое отверстие, достаточное для того, чтобы вставить палочку металлического алюминия, и помещают плотно закрытый тигель в другой, больших размеров, а промежуточное пространство засыпают углем; наружный тигель закрывают крышкой, замазывают и накаливают 1 ½ —2 часа при температуре около 1500°. По охлаждении растворяют алюминий в едком натре и обрабатывают остаток соляной кислотой. Полученный таким образом бор представляет просвечивающие красновато-желтые квадратные кристаллы уд. веса 2,68, по свойствам напоминающие алмаз; они обладают большой способностью лучепреломления и твердостью: чертят, подобно алмазу, корунд и сапфир. Известно несколько разновидностей кристаллического бора, получающихся различными способами, но все они не представляют химически чистого вещества, а содержат углерод и алюминий, другие же только углерод. По исследованиям Гампе, здесь имеются определенные химические соединения состава В 48Al3C2 и B 12 Al. Кристаллический бор несравненно более постоянен относительно химических деятелей, чем аморфный: он весьма трудно окисляется при накаливании в чистом кислороде; точно так же он хорошо сопротивляется действию кислот, за исключением царской водки. Весьма интересны определения теплоемкости кристаллического бора (Вебер): оказывается, что она быстро возрастает с повышением температуры подобно тому, как это наблюдается и для угля. Такого рода факт весьма важен для убеждения в общности закона Дюлонга и Пти (см. Теплоемкость), так как определения, сделанные при низких сравнительно температурах, дают для атомной теплоемкости числа, которые значительно менее требуемых законом; напр., при —40° теплоемкость равна 0,1915, а при +233° она уже доходит до 0,3663. В своих соединениях бор функционирует как трехатомный элемент, на что указывает и место его в периодической системе (см. это сл.): он помещается в третьей группе вместе с алюминием и в одном ряду с углеродом (В = 11; С = 12). Непосредственным соседством с этим последним элементом объясняется до известной степени существование аллотропических видоизменений бора. Таким образом, общая формула борных соединений будет BX 3 (где Х = Cl, Br, ОН и т. п.). Из них, как уже упомянуто, наиболее важными и, между прочим, единственными источниками для получения всех других соединений являются борная кислота и ее соли. Борная кислота Н 3 ВО 3, или В(ОН) 3, Acidum boricum, получена впервые в 1802 г. из буры Гомбергом, откуда ее название "Sal sedativum Hombergii"; в 1808 г. Гей-Люссак и Тенарпочти одновременно с ними Деви) разложили ее на бор и кислород; химический состав установлен Берцелиусом в 1824 г. В природе вещество встречается в вулканических местностях (в Тоскане, в Калифорнии) по краям небольших озер или бассейнов, образовавшихся через сгущение водяных паров, вырывающихся из трещин в земле (фумаролы, или suffioni). Борная кислота летуча с парами воды, а потому увлекается ими из глубины земли и мало-помалу выкристаллизовывается по мере испарения воды из упомянутых бассейнов. Такая природная борная кислота носит у минералогов название "сассолин". Соли борной кислоты встречаются в природе в виде минералов, каковы боронатрокальцит, борнокислый кальций-натрий, борацит — борнокислый магний и др. Кроме того, борная кислота найдена в морской воде и во многих минеральных источниках. Главная масса ее добывается в Тоскане, из фумарол; здесь, как уже указано, во многих местах из трещин в земле или нарочно устроенных буровых скважин вырываются горячие водяные пары, смешанные с азотом, сернистым водородом, небольшим количеством борной кислоты (около 1/1 0 %), аммиаком и др. веществами. Для эксплуатации этого естественного источника борной кислоты пользуются следующим способом, хорошо сообразующимся с местными условиями: над трещинами, выделяющими пары, устраивают вместилища для воды из плитняка и цемента и в такие бассейны напускают воду (высотою до 2 метр.) из близлежащих источников. Пар, с силой вырывающийся из земли, проходит через воду и отдает ей часть содержащейся в нем борной кислоты. Через 24 часа содержание борной кислоты в воде достигает известного максимума — ½ процента; эту воду спускают в особую цистерну для отстаивания и вновь наполняют бассейн свежей водой: отстоявшийся слабый раствор борной кислоты выпаривают до кристаллизации, причем необходимое тепло доставляется теми же фумаролами. С этой целью над ними помещают свинцовые чрены в 125 метр. длины, 2,5 метра ширины и 20 сантиметров глубины, так, чтобы действию горячих паров было подвержено все дно сосуда, поддерживаемого железными брусьями. Прозрачный раствор постоянно притекает с одного конца чрена, поставленного несколько наклонно, и этот приток посредством особого приспособления регулируется таким образом, что с другого конца постоянно оттекает более концентрированный раствор, способный кристаллизоваться. Этот раствор поступает в бассейн, подогреваемый парами фумарол, и после осветления охлаждается в деревянных сосудах, выложенных свинцовыми листами, где и кристаллизуется; маточный раствор отделяют и вновь сгущают, что дает новую порцию борной кислоты, уже менее чистой; различные порции смешивают и таким образом получают препарат среднего достоинства, который и составляет продажную борную кислоту. Эта последняя содержит до 25 % подмесей, именно аммиачных и сернокислых солей и употребляется для приготовления буры. В Тоскане таким путем добывается свыше 2,5 миллионов килогр. борной кислоты. Причина образования внутри земли паров, содержащих борную кислоту, в настоящее время с достоверностью не известна. Дюма объясняет это нахождением на некоторой глубине в земле залежей сернистого бора В 2S3, разлагающегося при действии воды на борную кислоту и сернистый водород. Варингтон, Вёлер, Девилль и Попп приписывают это разложению не сернистого, а азотистого бора, BN; Баллей и Бишоф — действию растворов нашатыря на минералы, содержащие борную кислоту. Для получения химически чистой борной кислоты к раствору 1 ч. буры в 4 ч. горячей воды прибавляют столько соляной кислоты, чтобы жидкость сильно окрашивала лакмус в красный цвет; по охлаждении почти вся борная кислота выделяется в виде тонких чешуек, которые отделяют от маточного раствора отжиманием и окончательно очищают перекристаллизацией: Na2B4O7 + 2HCl + 5H2O = 4B(OH)3 + 2NaCl. Борная кислота кристаллизуется из воды в перламутровых просвечивающих листочках, жирных на ощупь, уд. веса 1,434 (при 15° Ц.); 1 ч. кислоты растворяется в 25,6 ч. воды при 15° и в 2,9 ч. кипящей воды; вещество растворимо также в летучих эфирных маслах и в алкоголе, с парами которого летит при нагревании, образуя сложные эфиры; алкогольный раствор свободной кислоты (или солей ее в присутствии серной кислоты) горит зеленым пламенем, что служит для открытия борных соединений (при этом опыте следует избегать медных солей и солей хлористоводородной кислоты, также окрашивающих пламя спирта в зеленый цвет). Кислотные свойства борной кислоты весьма слабы: водный раствор ее окрашивает синюю лакмусовую бумажку в слабо красный цвет, а куркумовую в бурый, подобно щелочам; на слабый кислотный характер вещества указывает также способность его соединяться в довольно прочные сочетания с кислотами серной (Шульц-Селлак) и фосфорной (Г. Г. Густавсон, А. Фогель). Но если борная кислота в водяных растворах малоэнергична и вытесняется из солей другими кислотами, даже угольной, то в безводном состоянии, в виде ангидрида, она является энергическим кислотным окислом, вытесняющим ангидриды многих сильных кислот, что зависит от сравнительно малой летучести борного ангидрида. В технике борная кислота имеет немало применений: громадные количества ее идут на приготовление буры; в Швеции ее употребляют под именем асептина для консервирования мяса, молока, пива и т. п.; далее, борной кислотой пропитывают светильни стеариновых свеч (для того, чтобы сделать золу светильни легкоплавкой); она же идет для приготовления гюинетовой зелени (см. это сл.) и входит в состав различных эмалей и глазурей; борнокислая закись марганца употребляется при изготовлении скоро высыхающих масляных красок и т. п. Борный ангидрид, или безводная борная кислота, В 2 О 3, получается прямо при сожигании бора в кислороде или, проще, сильным прокаливанием (580° Ц.) борной кислоты: 2H3 ВО+ = В 2 О 3 + 3H2O. Он имеет вид прозрачной стекловидной массы, быстро мутнеющей на воздухе вследствие поглощения влажности; в воде растворяется с разогреванием и дает при этом описанный выше нормальный гидрат Н 3 ВО 3. Окиси различных металлов растворяются в расплавленном борном ангидриде и дают бесцветные или окрашенные стекла; при этом могут образоваться средние соли борной кислоты, отвечающие нормальному гидрату Н 3 ВО 3, напр. Na 3 ВО 3 и Mg 3B2 О 6; в водных растворах всегда получаются соли с меньшим количеством оснований (см. ниже). Если из сплава окиси с борным ангидридом удалить действием сильного жара избыток ангидрида, то некоторые окислы выделяются в кристаллическом виде. На этом основаны замечательные опыты Эбельмена над получением искусственных драгоценных камней; он получал напр. кристаллический глинозем, шпинель — соединение MgO с Al 2 О 3, встречающееся в природе, и др. Соли борной кислоты, борнокислые соли. Борная кислота трехосновна, но средние соли, отвечающие нормальному гидрату Н 3 ВО 3, мало известны; они образуются при действии высокой температуры, какова напр. указанная выше соль Na 3 ВО 3; в природе встречаются и искусственным путем получены производные других гидратов борной кислоты, существование которых частью доказано фактически. Так, при нагревании до 100° нормального гидрата выделяется вода и образуется стекловидная метаборная кислота НВО 2 = Н 3 ВО 3 — Н 2 О; ей соответствуют кристаллические растворимые соли КВО 2 и NaBO 2 + 4Н 2 О; при продолжительном нагревании того же гидрата до 140° получена стекловидная борная кислота состава H 2B4O7 (тетра— или пироборная): 4Н 3 ВО 3 — 5Н 2 О = Н 2 В 4 О 7 производным ее является столь важная в практике бура. Другие соли соответствуют еще более сложным гидратам, которые все могут быть произведены от нормального гидрата через отнятие некоторого числа частиц воды от нескольких частиц Н 3 ВО 3. Борно-натровая соль, или бура, Na 2B4O7 + 10Н 2 О представляет наиболее важное соединение в практическом отношении; в Европу издавна привозится под именем тинкала из Азии, где она встречается в некоторых озерах Индии, Тибета (до 1000 тонн ежегодно); громадный запас этого соединения находится в озерах Калифорнии и Невады (добывается до 2000 тонн ежегодно). Привозный продукт имеет вид небольших бесцветных или желтоватых кристаллов, жирных на ощупь, которые подвергают очищению, или рафинированию, посредством перекристаллизации. С давних пор буру готовят в Европе искусственно, насыщая раствор соды неочищенной тосканской борной кислотой (до 2000 тонн) или для той же цели нагревают с содой минерал боронатрокальцит (Tiza), который в больших количествах привозится в Европу из Южной Америки (около 1000 тонн кислоты ежегодно). Бура, по опытам Жернеза, легко дает в известных условиях пересыщенные растворы и кристаллизуется при этом в октаэдрах уд. веса 1,8 с 5 частицами воды. При кристаллизации растворов без особенных предосторожностей, в обыкновенных условиях, получаются одноклиномерные призмы с 10 частицами воды, уд. веса 1,7. 100 частей воды растворяют при 0° около 3 ч., а при 100° 201 вес. часть призматической (обыкновенной) буры. Раствор имеет слабую щелочную реакцию вследствие разложения водою, выделяет аммиак из аммиачных солей, поглощает угольную кислоту, растворяет йод и вообще действует как щелочь. На воздухе кристаллы буры выветриваются, при нагревании сначала плавятся в своей кристаллизационной воде, затем пучатся, сильно увеличиваются в объеме и наконец дают прозрачный бесцветный сплав безводной соли. В расплавленном состоянии бура растворяет окиси многих металлов, при чем получаются бесцветные или окрашенные стекла; этим свойством буры часто пользуются при качественном химическом анализе, сплавляя испытуемое вещество с бурой в ушке платиновой проволоки; окись кобальта, напр., дает темно-синее стекло, окись хромазеленое и т. п. Помимо употребления в медицине, бура имеет обширное применение в технике: она входит в состав эмалей, страз и других легкоплавких стекол; далее, ею пользуются при спаивании металлов благодаря ее способности растворять окислы; с шеллаком бура дает растворимый в воде лак, а с водой и казеином клейкую жидкость, заменяющую гуммиарабик, и т. п. Водородистый бор. При сплавлении борной кислоты с избытком порошкообразного магния или аморфного бора с 3 ч. магния получается соединение, которое при действии соляной кислоты дает бесцветную газообразную смесь водорода с водородистым бором; она обладает неприятным запахом, горит ярким зеленым пламенем и дает при этом, как продукты горения, борную кислоту и воду. Если ввести в пламя холодный фарфоровый предмет, то на нем осаждается аморфный бор. В чистом виде вещество не получено; анализ его дает числа, указывающие на формулу ВН 3 (Jones и Taylor "Chem. Soc." 1881, 293) Азотистый бор BN образуется, как уже указано, прямым соединением азота с бором при накаливании; получен Бальменом в 1842 г. при нагревании борного ангидрида с цианистым калием. По Вёлеру, вещество готовят, накаливая в платиновом тигле тесную смесь 1 ч. сплавленной буры с 2 ч. нашатыря; образующуюся пористую массу обрабатывают водой и соляной кислотой. Азотистый бор представляет белый аморфный, мягкий на ощупь, легкий порошок, не плавящийся в сильном жару, отличающийся замечательным постоянством по отношению к химическим деятелям; азотная и соляная кислоты, щелочные растворы, водород и хлор при накаливании на него не действуют; при сплавлении с едким кали и при накаливании с парами воды вещество дает аммиак. Хлористый бор, ВCl, получен Берцелиусом при накаливании бора в струе хлора. По Густавсону, его весьма удобно готовить нагреванием смеси хорошо измельченного борного ангидрида (вес. 1 ч.) и пятихлористого фосфора (2 ч.), в запаянных трубках до 150° в продолжение 3—4 суток ("Журн. Р. Х. О", т. II, стр. 178). Хлористый бор представляет газообразное вещество, сгущающееся в жидкость, кипящую при +17°, уд. веса 1,35; натрий при обыкновенной температуре на него не действует; вещество легко реагирует с водой и соединениями, содержащими водный или аммиачный остатки; на воздухе оно дымит, разлагаясь действием влажности на соляную и борную кислоты. Известен также бромистый, а в самое последнее время Муассаном приготовлен йодистый бор ("Comptes rendus", т., CXII, стр. 717). Фтористый бор BF3 получен Гей-Люссаком и Тенаром при накаливании фтористого кальция с борным ангидридом; удобнее готовить его нагреванием упомянутых веществ с крепкой серной кислотой: 3СаF 2 + 4В 2 О 3 + 3H2SO4 = 8CaSO4 + 2BF3 + 3Н 2O. Фтористый Б. представляет бесцветный газ, сгущающийся при —110° в прозрачную бесцветную жидкость, дымящий на воздухе вследствие соединения с водой; 1 объем воды растворяет до 1050 объемов газа (Базаров); весьма прочен; обугливает органические вещества, подобно серной кислоте, отнимая от них воду; не разъедает стекла. При избытке фтористого бора образуется водный раствор газа, способный перегоняться, состава ВF 3 x 2H2 O, называемый фтороборной кислотой, которой соответствуют свои соли. При действии воды эта система изменяется с выделением плавиковой кислоты и образованием борофтористоводородной кислоты, раствор которой разлагается при выпаривании; известны ее соли, напр. KBF 4. Существуют, по-видимому, и другие определенные соединения фтористого бора с водой и плавиковой кислотой. Органические соединения бора. С алкоголями борная кислота дает жидкие сложные эфиры, горящие зеленым пламенем, водою разлагающиеся обратно на борную кислоту и взятый алкоголь. Соединения эти получаются прямо нагреванием борного ангидрида с алкоголями в дигесторе. Борнометиловый эфир В(ОСН 3)3 кипит при 65°, этиловый, В(ОС 2 Н 5)3 — при 120°. При действии борного ангидрида эфиры переходят в эфирные кислоты, а с цинкорганическими соединениями образуют соответствующие металлоорганические производные бора, представляющие легколетучие жидкости, в воде почти нерастворимые, воспламеняющиеся на воздухе. Бортриметил В(СН 3)3 — легко сжижаемый газ с невыносимо острым запахом, уд. веса 1,9108; бортриэтил В(С 2 Н 5)3 получен при действии цинкэтила на хлористый бор и представляет жидкость с острым запахом, кипящую при 95°, уд. веса 0,6961. М. Л.

Определение слова «Бор» по БСЭ:
Бор (Bohr)
Нильс Хенрик Давид (7.10.1885, Копенгаген, - 18.11.1962, там же), датский физик. Создал первую квантовую теорию атома, а затем участвовал в разработке основ квантовой механики. Внёс также значительный вклад в развитие теории атомного ядра и ядерных реакций, процессов взаимодействия элементарных частиц со средой. В 1908 Б. окончил университет в Копенгагене. Здесь он выполнил свои первые работы по исследованию колебаний струй жидкости (1907-10) и классической электронной теории металлов (1911). В 1911-12 работал в Кембридже у Дж. Дж. Томсона и в Манчестере у Э. Резерфорда. В 1914-16 читал курс математической физики в Манчестере. В 1916 получил кафедру теоретической физики в Копенгагене. С 1920 и до конца жизни руководил созданным им институтом теоретической физики в Копенгагене, который теперь носит его имя. В 1943, когда стало известно о готовящейся гитлеровцами, оккупировавшими Данию, расправе над Б., он был вывезен на лодке организацией Сопротивления в Швецию, а оттуда на английском военном самолёте - в США. Здесь Б. участвовал в работах по созданию атомной бомбы. После войны вернулся в Данию. Активно участвовал в борьбе против атомной угрозы.
Работая в Манчестере, Б. воспринял сформулированное Резерфордом в 1911 представление о планетарном строении атома. Однако уже в то время было ясно, что такое строение (ядро и вращающиеся вокруг него по орбитам электроны) противоречит классической электродинамике и механике. По законам классической электродинамики электрон в атоме должен был бы непрерывно излучать электромагнитные волны, потерять свою энергию за ничтожно малую долю секунды и упасть на ядро. Следовательно, согласно классической физике, устойчивые движения электронов в атоме невозможны и атом как динамическая система существовать не может. Исходя из идеи квантования энергии, выдвинутой ранее М. Планком в теории излучения (см. Излучение), Б. разработал и в 1913 опубликовал теорию атома, в которой показал, что планетарная структура атома и свойства его спектра излучения могут быть объяснены, если считать, что движение электрона подчинено некоторым дополнительным ограничениям - т. н. постулатам Б. Согласно этим постулатам, для электрона существуют избранные, или
«разрешенные», орбиты, двигаясь по которым, он, вопреки законам классической электродинамики, не излучает энергии, но может скачком перейти на более близкую к ядру «дозволенную» орбиту и при этом испустить квант (порцию) электромагнитной энергии, пропорциональный частоте электромагнитной волны. Построенная на этих постулатах и развитая затем самим Б. и другими физиками теория атома впервые объяснила его особую устойчивость, сохранение атомом при сравнительно слабых столкновениях своей структуры и характера спектра.
В 1923 Б. сформулировал количественно т. н. принцип соответствия (см. Соответствия принцип), указывающий, когда именно существенны эти квантовые ограничения, а когда достаточна классическая физика. В том же году Б. впервые удалось дать на основе своей модели атома объяснение периодической системы элементов Менделеева. Однако теория Б. в целом содержала внутреннее противоречие в своей основе, поскольку она механически объединяла классические понятия и законы с квантовыми условиями, и не могла считаться удовлетворительной. Кроме того, она была неполной, недостаточно универсальной, т.к. не могла быть использована для количественного объяснения всего многообразия явлений атомного мира. Такой теорией явилась квантовая механика - теория движения микрочастиц, созданная в 1924-26 Л. де Бройлем, В. Гейзенбергом и Э. Шрёдингером.
Однако основные идеи квантовой механики, несмотря на её формальные успехи, в первые годы оставались во многом неясными. Для полного понимания физических основ квантовой механики, её связи с классической физикой был необходим дальнейший глубокий анализ соотношения классического (макроскопического) и квантового (микроскопического - на атомном и субатомном уровнях) материальных объектов, процесса измерения характеристик микрообъекта и вообще физического содержания используемых в теории понятий. Этот анализ потребовал напряжённой работы, в которой ведущую роль сыграл Б. Его институт стал центром такого рода исследований. Главная идея Б. заключалась в том, что заимствованные из классической физики динамические характеристики микрочастицы (например, электрона) - её координата, импульс (количество движения), энергия и др. - вовсе не присущи частице самой по себе.
Смысл и определённое значение той или иной характеристики электрона, например его импульса, раскрываются во взаимосвязи с классическими объектами, для которых эти величины имеют определённый смысл и все одновременно могут иметь определённое значение (такой классический объект условно называется измерительным прибором). Эта идея имеет не только принципиальное физическое, но и философское значение. В результате была создана последовательная, чрезвычайно общая теория, внутренне непротиворечиво объясняющая все известные процессы в микромире для нерелятивистской области (т. е. пока скорости частиц малы по сравнению со скоростью света) и в предельном случае автоматически ведущая к классическим законам и понятиям, когда объект становится макроскопическим. Были также заложены основы релятивистской теории.
В 1927 Б. дал формулировку важнейшего принципа - принципа дополнительности, утверждающего невозможность при наблюдении микромира совмещения приборов двух принципиально различных классов, соответственно тому, что в микромире нет таких состояний, в которых объект имел бы одновременно точные динамические характеристики, принадлежащие двум определённым классам, взаимно исключающим друг друга. Это в свою очередь обусловлено тем, что не существует таких наборов классических объектов (измерительных приборов), в связи с которыми микрообъект обладал бы одновременно точными значениями всех динамических величин (см. Дополнительности принцип).
В 1936 Б. сформулировал фундаментальное для ядерной физики представление о характере протекания ядерных реакций (модель составного ядра). В 1939 совместно с Дж. А. Уилером он развил теорию деления ядер - процесса, в котором происходит освобождение огромных количеств ядерной энергии. В 40-50-х гг. Б. занимался в основном проблемой взаимодействия элементарных частиц со средой.
Б. создал большую школу физиков и многое сделал для развития сотрудничества между физиками всего мира. Институт Б. стал одним из важнейших мировых научных центров. Выросшие в этом институте физики работают почти во всех странах мира. В своём институте Б. принимал также советских учёных, многие из которых работали там подолгу. Б. неоднократно приезжал в СССР и в 1929 был избран иностранным членом АН СССР. Он являлся членом Датского королевского научного общества (с 1917), а также членом многих академий и научных обществ мира. Лауреат Нобелевской премии (1922).
Соч.: Das Quantenpostulat und die neuere Entwicklung der Atomistik, «Naturwissenschaften», 1928, H. 15, S. 245; Neutron capture and nuclear constitution, «Nature», 1936, v. 137, № 3461, p. 344; The mechanism of nuclear fission,
«Physical Review», 1939, v. 56, p. 426 (совм. с J. A. Wheeler); в рус. пер. - Три статьи о спектрах и строении атомов, М., 1923; Прохождение атомных частиц через вещество, М., 1950; Атомная физика и человеческое познание, М., 1962.
Лит.: Нильс Бор и развитие физики, пер. с англ., М., 1960 (библ.); Нильс Бор. Жизнь и творчество, пер. с дат., М., 1967; Мур P., Нильс Бор - человек и ученый, пер. с англ., М., 1969.
Е. Л. Фейнберг.
Н. Бор.


Бор (Bohr)
Оге (р. 19.6.1922, Копенгаген), датский физик, член Датской АН (1955). Сын Н. Бора. Окончил университет в Копенгагене. С 1946 в Институте теоретической физики (в 1963-72 директор); работает также в Северном институте теоретической ядерной физики
(«Нордита»). Профессор Копенгагенского университета (с 1956). Основные труды по ядерной физике. Создал коллективную модель ядра (совместно с Б. Моттельсоном). Нобелевская премия (1975). Член Норвежской АН (1962), Шведской АН (1965), Американской академии искусств и наук (1965).
Бор (Bohr)
Харальд (22.4.1887, Копенгаген, - 22.1.1951, там же), датский математик. Брат физика Н. Бора. С 1915 профессор Высшей технической школы и с 1930 - университета в Копенгагене, работал в области теории функций и теории чисел. В связи с исследованиями дзета-функции развил теорию почти периодических функций (1923). Эта теория, превратившаяся в самостоятельную математическую дисциплину, имеет многочисленные приложения в математическом анализе, небесной механике и физике.
Соч. в рус. пер.: Почти периодические функции, М. - Л., 1934.
Лит.: Titchmarsh Е. С., Harald Bohr, «Journal of London Mathematical Society», 1953, t. 28, № 109, p. 1.
Бор (лат. Borum)
В, химический элемент III группы периодической системы Менделеева, атомный номер 5, атомная масса 10,811; кристаллы серовато-чёрного цвета (очень чистый Б. бесцветен). Природный Б. состоит из двух стабильных изотопов: 10B (19%) и 11B (81%). Ранее других известное соединение Б. - Бура - упоминается в сочинениях алхимиков под арабским названием
«бурак» и латинским Borax, откуда и произошло наименование «бор». Свободный Б. (нечистый) впервые получили французские химики Ж. Гей-Люссак и Л. Тенар в 1808 нагреванием борного ангидрида B2O3 с металлическим калием. Общее содержание Б. в земной коре 3·10−4% по массе.
В природе Б. в свободном состоянии не обнаружен. Многие соединения Б. широко распространены, особенно в небольших концентрациях. В виде боросиликатов, боратов, бороалюмосиликатов, а также как изоморфная примесь в других минералах Б. входит в состав многих изверженных и осадочных пород. Соединения Б. найдены в нефтяных водах, морской воде, соляных озёрах, горячих источниках, в вулканических и сопочных грязях, во многих почвах. О главных природных соединениях Б., служащих для его промышленного получения, см. в ст. Бораты природные.
Физические и химические свойства. Известно несколько кристаллических модификаций Б. Для двух из них рентгеноструктурным анализом удалось полностью определить кристаллическую структуру, которая в обоих случаях оказалась весьма сложной. Атомы Б. образуют в этих структурах трёхмерный каркас подобно атомам углерода в алмазе. Этим объясняется высокая твёрдость Б. Однако строение каркаса в структурах Б. гораздо сложнее, чем в алмазе. Основной структурной единицей в кристаллах Б. служат двадцатигранники (икосаэдры), в вершинах каждого из которых находятся 12 атомов Б. (рис., а). Икосаэдры соединяются между собой как непосредственно (рис., б), так и посредством промежуточных атомов Б., не входящих в состав какого-либо икосаэдра (рис., в). При таком строении оказывается, что атомы Б. в кристаллах имеют разные координационные числа: 4, 5, 6 и 5 + 2 (5 ближних «соседей» и 2 более далёких).
Т. к. на внешней оболочке атома Б. находятся всего 3 электрона (электронная конфигурация 2sІ2p), на каждую присутствующую в кристаллическом Б. связь приходится существенно меньше двух электронов. В соответствии с современными представлениями, в кристаллах Б. осуществляется особый тип ковалентной связи - многоцентровая связь с дефицитом электронов. В соединениях ионного типа Б. 3-валентен. Так называемый
«аморфный» Б., получаемый при восстановлении B2O3 металлическим натрием или калием, имеет плотность 1,73 г/смі. Чистый кристаллический Б. имеет плотность 2,3 г/смі, температуру плавления 2075°C, температуру кипения 3860°C; твёрдость Б. по минералогической шкале 9, микротвёрдость 34 Гн/мІ (3400 кгс/ммІ). Кристаллический Б. - полупроводник. В обычных условиях он проводит электрический ток плохо. При нагревании до 800°C электрическая проводимость Б. увеличивается на несколько порядков, причём знак проводимости меняется (электронная - при низких температурах, дырочная - при высоких) (см. Полупроводниковые материалы).
Химически Б. при обычных условиях довольно инертен (взаимодействует активно лишь с фтором), причём кристаллический Б. менее активен, чем аморфный. С повышением температуры активность Б. возрастает и он соединяется с кислородом, серой, галогенами. При нагревании на воздухе до 700°C Б. горит красноватым пламенем, образуя борный ангидрид B2O3 - бесцветную стекловидную массу. При нагревании выше 900°C Б. с азотом образует Бора нитрид BN, при нагревании с углём - Бора карбид B4C, с металлами - Бориды. С водородом Б. заметно не реагирует; его гидриды (Бороводороды) получают косвенным путём. При температуре красного каления Б. взаимодействует с водяным паром: 2B + 3Н2О = B2O3 + 3H2. В кислотах Б. при обычной температуре не растворяется, кроме концентрированной азотной кислоты, которая окисляет его до борной кислоты H3BO3. Медленно растворяется в концентрированных растворах щелочей с образованием боратов.
Во фториде BF3 и других галогенидах Б. связан с галогенами тремя ковалентными связями. Поскольку для завершения устойчивой 8-электронной оболочки атому Б. в галогениде BX3 недостаёт пары электронов, молекулы галогенидов, особенно BFз, присоединяют молекулы других веществ, имеющие свободные электронные пары, например аммиака
3/03031167.tif
В таких комплексных соединениях атом Б. окружен четырьмя атомами (или группами атомов), что соответствует характерному для Б. в его соединениях координационному числу 4. Важные комплексные соединения Б. - Борогидриды, например Na [BH4], и фтороборная, или борофтористоводородная, кислота H [BF4], образующаяся из BF3 и HF; большинство солей этой кислоты (фтороборатов) растворимы в воде (за исключением солей К, Rb, Cs). Общая особенность самого Б. и его соединений - их сходство с кремнием и его соединениями. Так, борная кислота, подобно кремниевой, обладает слабыми кислотными свойствами и растворяется в HF с образованием газообразного BF3 (кремниевая даёт SiF4). Бороводороды напоминают кремневодороды, а карбид Б. - карбид кремния, и т.д. Представляет интерес особое сходство модификаций нитрида BN с графитом или алмазом. Это связано с тем, что атомы В и N по электронной конфигурации совместно имитируют 2 атома С (у В - 3 валентных электрона, у N - 5, у двух атомов С - по 4). Эта аналогия характерна и для других соединений, содержащих одновременно Б. и азот. Так, боразан BH3-NH3 подобен этану СН3-СН3, а боразен BH2=NH2 и простейший боразин BH
≡NH подобны соответственно этилену СН2=СН2 и ацетилену CH≡CH. Если тримеризация ацетилена C2H2 даёт бензол C6H6, то аналогичный процесс приводит от боразина BHNH к Боразолу B3N3H6 (см. также Борорганические соединения).
Получение и применение. Элементарный Б. из природного сырья получают в несколько стадий. Разложением боратов горячей водой или серной кислотой (в зависимости от их растворимости) получают борную кислоту, а её обезвоживанием - борный ангидрид. Восстановление В2О3 металлическим магнием даёт Б. в виде темно-бурого порошка; от примесей его очищают обработкой азотной и плавиковой кислотами. Очень чистый Б., необходимый в производстве полупроводников, получают из его галогенидов: восстанавливают BCl3 водородом при 1200°C или разлагают пары BBr3 на танталовой проволоке, раскалённой до 1500°C. Чистый Б. получают также термическим разложением бороводородов.
Б. в небольших количествах (доли %) вводят в сталь и некоторые сплавы для улучшения их механических свойств; уже присадка к стали 0,001-0,003% Б. повышает её прочность (обычно в сталь вводят Б. в виде Ферробора, т. е. сплава железа с 10-20% Б.). Поверхностное насыщение стальных деталей бором (до глубины 0,1-0,5 мм) улучшает не только механические свойства, но и стойкость стали против коррозии (см. Борирование). Благодаря способности изотопа 10В поглощать тепловые нейтроны, его применяют для изготовления регулирующих стержней ядерных реакторов, служащих для прекращения или замедления реакции деления. Б. в виде газообразного BF3 используют в счётчиках нейтронов. (При взаимодействии ядер 10В с нейтронами образуются заряженные α-частицы, которые легко регистрировать; число же α-частиц равно числу нейтронов, поступивших в счётчик: 105B + 10n = 73Li + 42α) (см. также Нейтронные детекторы и индикаторы).
Сам Б. и его соединения - нитрид BN, карбид B4C, фосфид ВР и др. - применяют как диэлектрики и полупроводниковые материалы. Обширное применение находят борная кислота и её соли (прежде всего бура), бориды и др. BF3 - катализатор некоторых органических реакций.
Лит.: Некрасов Б. В., Основы общей химии, т. 2, М., 1967; Щукарев С. А., Лекции по курсу общей химии, т. 2, Л., 1964; Бор, его соединения и сплавы, К., 1960.
В. Л. Василевский.
Б. в организме. Б. относится к числу химических элементов, которые в очень малых количествах содержатся в тканях растений и животных (тысячные и десятитысячные доли % на сухую массу). Б. необходим для поддержания нормальной жизнедеятельности растений. Важнейший симптом недостатка Б. - отмирание точки роста главного стебля, а затем и пазушных почек. Одновременно черешки и листья становятся хрупкими, цветки не появляются или не образуются плоды; поэтому при недостатке Б. падает урожай семян. Известны многие болезни, связанные с недостатком Б., например гниль сердечка сахарной свёклы, чёрная пятнистость столовой свёклы, побурение сердцевины брюквы и цветной капусты, засыхание верхушки льна, желтуха верхушки люцерны, бурая пятнистость абрикосов, опробковение яблок.
При недостатке Б. замедляется окисление сахаров, аминирование продуктов углеводного обмена, синтез клеточных белков; однако ферменты, для которых Б. является необходимым элементом, пока неизвестны. По данным М. Я. Школьника, при недостатке Б. у растений снижается содержание аденозинтрифосфорной кислоты, а также нарушается процесс окислительного фосфорилирования, вследствие чего энергия, выделяющаяся при дыхании, не может быть использована для синтеза необходимых веществ. При недостатке Б. в почве в неё вносят борные удобрения (см. Микроудобрения). В биогеохимических провинциях с избытком Б. в почве (например, в Северо-Западном Казахстане) возникают морфологические изменения и заболевания растений, вызываемые накоплением Б., - гигантизм, карликовость, нарушение точек роста и др. На почвах с интенсивным борным засолением встречаются участки, лишённые растительности,
«плешины», - один из поисковых признаков месторождения Б. Значение Б. в организме животных пока не выяснено. У человека и животных (овец, верблюдов) при питании растениями с избыточным содержанием Б. (60-600 мг/кг сухого вещества и более) нарушается обмен веществ (в частности, активность протеолитических ферментов) и появляется эндемическое заболевание желудочно-кишечного тракта - борный энтерит.
Лит.: Скок Дж., функция бора в растительной клетке, в кн.: Микроэлементы, пер. с англ., М., 1962; Ковальский В. В., Ананичев А. В., Шахова И. К., Борная биогеохимическая провинция Северо-Западного Казахстана, «Агрохимия», 1965, № 11.
В. В. Ковальский.
Рисунок к ст. Бор (химич. элемент).
Бор - сосновый лес, произрастающий преимущественно на сухой песчаной почве (сосновые леса, произрастающие на избыточно влажных и сырых почвах, на сфагновых болотах, Б. не называют). В СССР Б. занимают огромные площади от тундры до южной границы ареала сосны. Типичные Б. растут на дюнных холмистых местах и плато. В них нет подлеска; в живом напочвенном покрове преобладают лишайники. Эти леса составляют группу сухих Б. - беломошников или лишайниковых и близких к ним типов леса. На пологих склонах со свежими песчаными почвами произрастают свежие Б. - брусничники, черничники, чистые зеленомошники. В их составе могут встретиться берёза, местами ель и другие породы; в подлеске - единично рябина, можжевельник и др.; в живом покрове - брусника, черника, зелёные мхи. На более богатых супесчаных и суглинистых почвах развиваются сложные Б. двух-, трёхпородного состава (сосна с елью, сосна с дубом, сосна с липой и лещиной) с развитым подлеском и хорошо выраженным покровом. Такие Б. дают много ценной деловой древесины. См. также Сосновые леса.
А. П. Шиманюк.
Равнинный бор Прииртышья.
Бор (Milium)
род растений семейства злаков. Многолетние, реже однолетние травы с мелкими одноцветковыми колосками, собранными в раскидистые метёлки. 6 видов, распространённых в умеренном поясе Северного полушария. В СССР - 3 вида. Б. развесистый (Milium effusum) - многолетний корневищный злак с широколинейными листьями, растущий в лесах, зарослях кустарников. Это растение охотно поедается скотом, но большого кормового значения оно не имеет, т.к. растет большей частью в незначительных количествах.
Лит.: Кормовые растения сенокосов и пастбищ СССР, под ред. И. В. Ларина, т. 1, М. - Л., 1950.
Бор - город в Горьковской области РСФСР. Расположен на левом берегу Волги, против г. Горького, с которым соединён автодорожным мостом (с 1965). Ж.-д. ст. (Моховые Горы). 51 тыс. жителей (1969). Судоремонт, производство судового и портового оборудования, стекольный (оконное стекло, стеклопрофилит, стекла для автомобильной промышленности и др.), силикатный, металлопрокатный, ремонтно-механический, авторемонтный, торгового оборудования и торгового машиностроения заводы, мебельная, войлочная, сапоговаляльная, первичной обработки шерсти, строчевышивальная фабрики. Значительная часть предприятий Б. связана с заводами г. Горького. Вечерний индустриальный техникум, культурно-просветительное училище. Дом отдыха. Первые сведения о Б. относятся к 14 в., город с 1938.
Лит.: Трубе Л. Л., Наши города. Горький, 1954.
Бор - город в Югославии, в восточной Сербии, в Восточно-Сербских горах. 20 тыс. жителей (1965). Центр меднорудной (крупнейший рудник в зарубежной Европе) и медеплавильной промышленности страны.


Бопп   
Бор   
Бор Черный